
Exercise 1 A first CMSIS-RTOS2 project

This project will take you through the steps necessary to create and debug a CMSIS-RTOS2 based
project.

First start the pack installer

This can be done from within microvision from the main toolbar

In the pack installer select the boards tab, then select the CMSIS-RTOS Tutorial

Next select the Examples tab and open the first example by pressing the copy button

This will open a project shell which has been setup for the STM32F103B. This is a basic Cortex-M3
microcontroller. In microvision there is a legacy simulator which has a full model for the STM32F103.
This allows us to experiment with CMSIS-RTOS2 without the need for a specific hardware board.

This first project is a multi project workspace. The shell project is set as the active project. A pre built
working project is included as a reference. If you want to build this project highlight the project, right
click and select “Set as active project”. Any compile and debug actions will work on the active project.

Open the Run Time Environment (RTE) by selecting the green diamond on the toolbar

The RTE allows you to configure the platform of software components you are going to use in a given
project. As well as displaying the available components the RTE understands their dependencies on
other components.

To configure the project for use with the CMSIS-RTOS2 Keil RTX, simply tick the CMSIS::RTOS2
(API):Keil RTX5 box.

Switch the Keil RTX5 dropdown variant box from ‘Source’ to ‘Library’.

This will cause the selection box to turn orange meaning that additional components are required.
The required component will be displayed in the Validation Output window.

 To add the missing components you can press the Resolve button in the bottom left hand corner of
the RTE.

This will add the device startup code and the CMSIS Core support. When all the necessary components
are present the selection column will turn green.

Fig 6 Add the RTOS

Fig 7 If the Sel column elements turn
Orange then the RTOS requires other
components to be added

Fig 8 The validation box lists the missing components

It is also possible to access a components help files by clicking on the blue hyperlink in the Description
column.

The other RTOS options will be discussed towards the end of this tutorial.

 Now press the OK button and all the selected components will be added to the new project

The CMSIS components are added to folders displayed as a green diamond. There are two types of file
here. The first type is a library file which is held within the tool chain and is not editable. This file is
shown with a yellow key to show that it is ‘locked’ (read-only). The second type of file is a configuration
file. These files are copied to your project directory and can be edited as necessary. Each of these files
can be displayed as a text files but it is also possible to view the configuration options as a set of pick
lists and drop down menus.

To see this open the RTX_Config.h file and at the bottom of the editor window select the
‘Configuration Wizard’ tab.

Click on Expand All to see all of the configuration options as a graphical pick list:

Fig 9 pressing the resolve button adds the missing components and the Sel. Column turns green

Fig 9 The configured project platform

Fig 10 Selecting the configuration wizard

For now it is not necessary to make any changes here and these options will be examined towards the
end of this tutorial.

Our project contains four configuration files three of which are standard CMSIS files

File name Description

Startup_STM32F10x_md.s Assembler vector table

System_STM32F10x.c C code to initialize key system
peripherals, such as clock tree, PLL
external memory interface.

RTE_Device.h Configures the pin multiplex

RTX_Config.h Configures Keil RTX

Now that we have the basic platform for our project in place we can add some user source code which
will start the RTOS and create a running thread.

To do this right-click the ‘Source Group 1’ folder and select ‘Add new item to Source Group 1’

In the Add new Item dialog select the ’User code template’ Icon and in the CMSIS section select the
‘CMSIS-RTOS ‘main’ function’ and click Add

Fig 11 The RTX configuration
options

Fig 12 Adding a source module

Table 2 Project configuration files

Repeat this but this time select ‘CMSIS-RTOS2 Thread’.

This will now add two source files to our project main.c and thread.c

Open thread.c in the editor

We will look at the RTOS definitions in this project in the next section. For now this file contains two
functions Init_Thread() which is used to start the thread running and the actual thread function.

Copy the Init_Thread function prototype and then open main.c

Main contains the functions to initialize and start the RTOS kernel. Then unlike a bare metal project
main is allowed to terminate rather than enter an endless loop. However this is not really
recommended and we will look at a more elegant way of terminating a thread later.

In main.c add the Init_Thread prototype as an external declaration and then call it after the
osKernelInitialize() function as shown below.

 extern int Init_Thread (void);

/*--

 * Application main thread

 ---/

void app_main (void *argument) {

 Init_Thread ();

 for (;;) {}

}

Build the project (F7)

Fig 13 selecting a CMSIS RTOS
template

Fig 14 The project with main and
Thread code

Start the debugger (Ctrl+F5)

This will run the code up to main

Open the Debug → View → Watch Windows →RTX RTOS

Start the code running (F5)

This debug view shows all the running threads and their current state. At the moment we have three
threads which are app_main, osRtxIdleThread and Thread.

This window is a component view which shows key variables in a software library (component). It is
generated by an XML file. It is possible to create such a view for key variables in your application code.
This is very useful if you have a long term project or code that you are going to give to a third party.

Exit the debugger

While this project does not actually do anything it demonstrates the few steps necessary to start
using CMSIS-RTOS2.

Fig 16 The RTX5 component
viewer

Exercise 2 Creating and managing threads

In this project we will create and manage some additional threads. Each of the threads created will
toggle a GPIO pin on GPIO port B to simulate flashing an LED. We can then view this activity in the
simulator.

Open the Pack Installer.

Select the Boards::Designers Guide Tutorial.

Select the example tab and Copy “EX 9.2 and 9.3 CMSIS-RTOS2 Threads”.

A reference copy of the first exercise is included as Exercise 9.1

This will install the project to a directory of your choice and open the project in µVision.

Open the Run Time Environment Manager

In the board support section the MCBSTM32E:LED box is ticked. This adds support functions to control
the state of a bank of LED’s on the Microcontroller’s GPIO port B.

As in the first example main() creates app_main() and starts the RTOS. Inside app_main() we create
two additional threads. First we create handles for each of the threads and then define the structures
for each thread. The structures are defined in two different ways, for app_main we define the full
structure and use NULL to inherit the default values.

static const osThreadAttr_t threadAttr_app_main = {
 "app_main",
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 osPriorityNormal,
 NULL,
 NULL
};

For the thread LED1 a truncated syntax is used as shown below;

static const osThreadAttr_t ThreadAttr_LED2 = {

Fig 19 selecting the board support components

 .name = "LED_Thread_2",
};

In order to use this syntax the compiler options must be changed to allow C99 declarations

Project → Options for Target→C/C++

Now app_main() is used to first initialise the bank of LED’s and then create the two threads. Finally
app_main() is terminated with the osThreadExit() api call.

void app_main (void *argument) {

 LED_Initialize ();

 led_ID1 = osThreadNew(led_thread1, NULL, &threadAttr_LED1);

 led_ID1 = osThreadNew(led_thread2, NULL, &threadAttr_LED2);

 osThreadExit();

}

Build the project and start the debugger

Start the code running and open the Debug → OS Support → System and Thread Viewer

Now we have four active threads with one running and the others ready.

Fig 20 The running Threads

Now open the Peripherals → General Purpose IO → GPIOB window

Our two led threads are each toggling a GPIO port pin. Leave the code running and watch the pins
toggle for a few seconds.

If you do not see the debug windows updating check the view/periodic window update option is
ticked.

 void led_thread2 (void const *argument) {

 for (;;) {

 LED_On(1);

 delay(500);

 LED_Off(1);

 delay(500);

 }}

Each thread calls functions to switch an LED on and off and uses a delay function between each on
and off. Several important things are happening here. First the delay function can be safely called by
each thread. Each thread keeps local variables in its stack so they cannot be corrupted by any other
thread. Secondly none of the threads enter a descheduled waiting state, this means that each one
runs for its full allocated time slice before switching to the next thread. As this is a simple thread most
of its execution time will be spent in the delay loop effectively wasting cycles. Finally there is no
synchronization between the threads. They are running as separate ‘programs’ on the CPU and as we
can see from the GPIO debug window the toggled pins appear random.

Fig 22 the peripheral window
shows the LED pin activity

Exercise 3 Memory Model

In this exercise we will create a thread with a custom memory allocation and also create a thread

with a static memory allocation.

In the Pack Installer select “Ex memory model” and copy it to your tutorial directory.

This exercise uses the same two LED flasher threads as the previous exercise.

Open cmsis::rtx_config.c

The threads are allocated memory from the global dynamic memory pool and by default each thread

is allocated 200 bytes

When we create led-thread1 we pass the attribute structure which has been modified to create the

thread with a custom stack size of 1025 bytes

static const osThreadAttr_t ThreadAttr_LED1 = {

 "LED_Thread_1",

 NULL, //attributes

 NULL, //cb memory

 NULL, //cb size

 NULL, //stack memory

 1024, //stack size This memory is allocated from the global memory pool

 osPriorityNormal,

 NULL, //trust zone id

 NULL //reserved

};

The second thread is created with a statically defined thread control block and a statically defined

stack space. First we need to define an array of memory for the stack space;

static uint64_t LED2_thread_stk[64];

Followed by a custom RTX thread control block;

static osRtxThread_t LED2_thread_tcb;

The custom type osRtxThread is defined in rtx_os.h

Now we can create a thread attribute which statically allocates the both the stack and the task

control block;

static const osThreadAttr_t ThreadAttr_LED2 = {

 "LED_Thread_2",

 NULL, //attributes

 &LED2_thread_tcb, //cb memory

 sizeof(LED2_thread_tcb), //cb size

 &LED2_thread_stk[0], //stack memory Here the control block and user stack space are statically allocated

 sizeof(LED2_thread_stk), //stack size

 osPriorityNormal,

 NULL, //trust zone id

 NULL //reserved

};

Build the code.

Start the debugger and check it runs

The statically allocated thread will not appear in the RTOS component viewer as the custom memory

allocation is not detected

Exit the debugger

In the CMSIS:RTX_Conf.c file we can change the memory model to use “Object Specific” memory

allocation.

Set the Global Dynamic memory size to zero

In thread configuration enable the Object specific memory model

Set the number of threads to two

Number of user threads wit default stack size to 1 and total stack size for threads with use

provided stack to 1024.

In total we have three user threads but one has statically allocated memory so our thread object

pool only needs to accommodate two. One of those threads (Led_thread1) has a custom stack size

of 1024 bytes. We need to provide this information to the RTOS so it can work out the total amount

of memory to allocate for thread use.

Enable the MUTEX object

Set the number of mutex objects to 5

We will use mutexes later but they are concerned with protecting access to resources. The RTOS

creates a number to protect access to the run time ‘C’ library from different threads.

Build the code

Start the debugger

Run the code

Now we have one thread using statically located memory and object using object specific memory.

Exercise 4 Multiple thread instances

In this project we will look at creating one thread and then create multiple runtime instances of the
same thread.

In the Pack Installer select “Ex 4 Multiple Instances” and copy it to your tutorial directory.

This project performs the same function as the previous LED flasher program. However we now have
one led switcher function that uses an argument passed as a parameter to decide which LED to flash.

 void ledSwitcher (void const *argument) {

 for (;;) {
 LED_On((uint32_t)argument);
 delay(500);
 LED_Off((uint32_t)argument);
 delay(500);
 }
 }

Then in the main thread we create two threads which are different instances of the same base code.
We pass a different parameter which corresponds to the led that will be toggled by the instance of
the thread.
First we can create two different thread definitions with different debug names

static const osThreadAttr_t ThreadAttr_LedSwitcher1 = {
 .name = "LedSwitcher1",
 };

static const osThreadAttr_t ThreadAttr_LedSwitcher2 = {
 .name = "LedSwitcher2",
 };

Next we can create two instances of the same thread code

 led_ID1 = osThreadNew(ledSwitcher,(void *) 1UL, &ThreadAttr_LedSwitcher1);
 led_ID2 = osThreadNew(ledSwitcher,(void *) 2UL, &ThreadAttr_LedSwitcher2);

Build the code and start the debugger

Start the code running and open the RTX5tasks and system window

Here we can see both instances of the ledSwitcher task each with a different ID.

Examine the Call stack + locals window

Fig 25 Multiple instances of thread
running

Here we can see both instances of the ledSwitcher threads and the state of their variables. A different
argument has been passed to each instance of the thread.

Fig 26 The watch window is thread aware

Exercise 5 Joinable threads

In this exercise we will create a thread which in turn spawns two joinable threads. The initial thread
will then call osThreadJoin() to wait until each of the joinable threads has terminated.

In the Pack Installer select “Ex 4 Join ” and copy it to your tutorial directory.

Open main.c

In main.c we create a thread called worker_Thread and define it as joinable in the thread attribute
structure.

When the RTOS starts we create the led_thread() as normal.

__NO_RETURN void led_thread1 (void *argument) {

for (;;) {

worker_ID1 = osThreadNew(worker_thread,(void *) LED1_ON, &ThreadAttr_worker);

LED_On(2);

osThreadJoin(worker_ID1);

……………………….

In this thread we create an instance of the worker thread and then call osJoin() to join it. At this point
the led_thread enters a waiting state and the worker thread runs.

void worker_thread (void *argument) {

if((uint32_t)argument == LED1_ON) {

LED_On(1);

}

else if ((uint32_t)argument == LED1_OFF){

LED_Off(1);

}

delay(500);

osThreadExit();

}

When the worker thread runs it flashes the led but instead of having an infinite loop it calls osExit();
to terminate its runtime which will cause led_thread1 to leave the waiting state and enter the ready
state and in this example then enter the run state.

Build the code

Start the debugger

Open the View\watch\RTOS window

Run the code and watch the behavior of the threads

Exercise 6 Time Management

In this exercise we will look at using the basic time osDelay() and delayUntil() functions

 In the Pack Installer select “Ex 6 Time Management” and copy it to your tutorial directory.

This is our original led flasher program but the simple delay function has been replaced by the osDelay
and osDelayUntil() API calls. LED2 is toggled every 100mS and LED1 is toggled every 500mS

 void ledOn (void *argument) {

 for (;;) {

 LED_On(1);

 osDelay(500);

 LED_Off(1);

 osDelay(500);

 }}

In the Led2 thread we use the osDelayUntil() function to create a 1000 tick delay

__NO_RETURN void led2 (void *argument) {

 for (;;) {

 ticks = osKernelGetTickCount();

 LED_On(2);

 osDelayUntil((ticks + 1000)); //Toggle LED 2 with an absolute delay

 LED_Off(2);

 osDelayUntil((ticks+2000));

 }

}

Build the project and start the debugger

Now we can see that the activity of the code is very different. When each of the LED tasks reaches the
osDelay() API call it ‘blocks’ and moves to a waiting state. The appMain thread will be in a ready state
so the scheduler will start it running. When the delay period has timed out the led tasks will move to
the ready state and will be placed into the running state by the scheduler. This gives us a multi
threaded program where CPU runtime is efficiently shared between threads.

Exercise 7 Virtual timer

In this exercise we will configure a number of virtual timers to trigger a callback function at various
frequencies.

In the Pack Installer select “Ex 7 Virtual Timers” and copy it to your tutorial directory.

This is our original led flasher program and code has been added to create four virtual timers to trigger
a callback function. Depending on which timer has expired, this function will toggle an additional LED.

The timers are defined at the start of the code

 osTimerId_t timer0,timer1,timer2,timer3;

static const osTimerAttr_t timerAttr_timer0 = {

 .name = "timer_0",

};

static const osTimerAttr_t timerAttr_timer1 = {

 .name = "timer_1",

};

static const osTimerAttr_t timerAttr_timer2 = {

 .name = "timer_2",

};

static const osTimerAttr_t timerAttr_timer3 = {

 .name = "timer_3",

};

They are then initialized in the main function;

 timer0 = osTimerNew(&callback, osTimerPeriodic,(void *)0, &timerAttr_timer0);

 timer1 = osTimerNew(&callback, osTimerPeriodic,(void *)1, &timerAttr_timer1);

 timer2 = osTimerNew(&callback2, osTimerPeriodic,(void *)2, &timerAttr_timer2);

 timer3 = osTimerNew(&callback2, osTimerPeriodic,(void *)3, &timerAttr_timer3);

Each timer has a different handle and ID and passed a different parameter to the common callback
function;

 void callback(void const *param){

 switch((uint32_t) param){

 case 0:

 GPIOB->ODR ^= 0x8;

 break;

 case 1:

 GPIOB->ODR ^= 0x4;

 break;

 case 2:

 GPIOB->ODR ^= 0x2;

 break;

 }}

When triggered, the callback function uses the passed parameter as an index to toggle the desired
LED.

In addition to the configuring the virtual timers in the source code, the timer thread must be enabled
in the RTX5 configuration file.

Open the RTX_Config.h file and press the configuration wizard tab

In the system configuration section make sure the User Timers box is ticked. If this thread is not
created the timers will not work.

Build the project and start the debugger

Run the code and observe the activity of the GPIOB pins in the peripheral window

There will also be an additional thread running in the System and Thread Viewer window

Fig 29 configuring the virtual timers

Fig 30 The user timers toggle
additional LED pins

The osDelay() function provides a relative delay from the point at which the delay is started. The virtual
timers provide an absolute delay which allows you to schedule code to run at fixed intervals.

Fig 31 The user timers create an
additional osTimerThread

Exercise 8 Idle Thread

 In the Pack Installer select “Ex 8 Idle” and copy it to your tutorial directory.

This is a copy of the virtual timer project.

Open the RTX_Config.c file and click the text editor tab

Locate the idle thread

 __NO_RETURN void osRtxIdleThread (void *argument){

 for (;;) {

 //wfe();

 }}

Build the code and start the debugger

Run the code and observe the activity of the threads in the event Viewer.

This is a simple program which spend most of its time in the idle demon so this code will be run almost
continuously

Open the View → Analysis Windows → Performance Analyzer.

This window shows the cumulative run time for each function in the project. In this simple project the
idle thread is using most of the runtime because there is very little application code.

Exit the debugger

Remove the delay loop and the toggle instruction and add a __wfe() instruction in the for loop, so
the code now looks like this.

 __NO_RETURN void osRtxIdleThread (void *argument){

 for (;;) {

 __wfe();

 }}

Rebuild the code, restart the debugger

Fig 33 The performance analyser
shows that most of the run time is
being spent in the idle loop

Now when we enter the idle thread the __wfe() (wait for event) instruction will halt the CPU until
there is a peripheral or SysTick interrupt.

Performance analysis during hardware debugging

The code coverage and performance analysis tools are available when you are debugging on real
hardware rather than simulation. However, to use these features you need two things: First, you need
a microcontroller that has been fitted with the optional Embedded Trace Macrocell (ETM). Second,
you need to use Keil ULINKpro debug adapter which supports instruction trace via the ETM.

Fig 34 The __wfe() intrinsic halts
the CPU when it enters the idle
loop. Saving cycles and runtime
energy

Exercise 9 Thread Flags

In this exercise we will look at using thread flags to trigger activity between two threads. Whilst this is
a simple program it introduces the concept of synchronizing the activity of threads together.

 In the Pack Installer select “Ex 9 Thread Flags” and copy it to your tutorial directory.

This is a modified version of the led flasher program one of the threads calls the same led function
and uses osDelay() to pause the task. In addition it sets a thread flag to wake up the second led task.

 void led_Thread2 (void *argument) {

 for (;;) {

 LED_On(2);

 oThreadFlagSet (T_led_ID1,0x01);

 osDelay(500);

 LED_Off(2);

 osThreadFlagSet (T_led_ID1,0x01);

 osDelay(500);}}

The second led function waits for the signal flags to be set before calling the led functions.

 void led_Thread1 (void *argument) {

 for (;;) {

 osThreadFlagsWait (0x01,osWaitForever);

 LED_On(1);

 osSignalWait (0x01,osWaitForever);

 LED_Off(1);

 }}

 Build the project and start the debugger

Open the GPIOB peripheral window and start the code running

Now the port pins will appear to be switching on and off together. Synchronizing the threads gives the
illusion that both threads are running in parallel.

This is a simple exercise but it illustrates the key concept of synchronizing activity between threads in
an RTOS based application.

Exercise 10 Event Flags

In this exercise we will look at the configuration of an event Flag object and use it to synchronise the
activity of several threads

 In the Pack Installer select “Ex 10 Event Flags” and copy it to your tutorial directory.

Open main.c

The code in main.c creates and event flag object and instantiates it in appMain().

static const osEventFlagsAttr_t EventFlagAttr_LED = {

 .name = "LED_Events",

};

void app_main (void *argument)

{

 LED_Initialize();

 EventFlag_LED = osEventFlagsNew(&EventFlagAttr_LED);

The code then creates three threads. Two of the threads wait for an event flag to be set ;

_NO_RETURN void led_Thread1 (void *argument) {

for (;;) {

osEventFlagsWait (EventFlag_LED,0x01,osFlagsWaitAny,osWaitForever);

LED_On(1);

 _NO_RETURN void led_Thread2 (void *argument) {

for (;;) {

osEventFlagsWait (EventFlag_LED,0x01,osFlagsWaitAny,osWaitForever);

 LED_On(2);

The remaining thread is used to set the flag;

__NO_RETURN void led_Thread3 (void *argument) {

for (;;) {

osEventFlagsSet (EventFlag_LED,0x01);

LED_On(3);

Build the code

Start the debugger and run the code

Observe the activity of the LED’s

Why does the code not run as expected?

When the event flag is set one of the waiting threads will wake up and clear the flag. The second waiting thread is not

triggered. Each thread should be waiting on a separate Event flag within the event flag object.

Change the code so that the waiting threads are waiting on separate flags and the remaining thread sets both flags

_NO_RETURN void led_Thread1 (void *argument) {

for (;;) {

osEventFlagsWait (EventFlag_LED,0x01,osFlagsWaitAny,osWaitForever);

LED_On(1);

 _NO_RETURN void led_Thread2 (void *argument) {

for (;;) {

osEventFlagsWait (EventFlag_LED,0x02,osFlagsWaitAny,osWaitForever);

 LED_On(2);

The remaining thread is used to set both flags;

__NO_RETURN void led_Thread3 (void *argument) {

for (;;) {

osEventFlagsSet (EventFlag_LED,0x03);

LED_On(3);

 }

}

Exercise 11 Semaphore Signalling

In this exercise we will look at the configuration of a semaphore and use it to signal between two
threads.

 In the Pack Installer select “Ex 11 Interrupt Signals” and copy it to your tutorial directory.

First, the code creates a semaphore called sem1 and initialises it with zero tokens and a maximum
count o five tokens.

 osSemaphoreId_t sem1;

 static const osSemaphoreAttr_t semAttr_SEM1 = {
 .name = "SEM1",
 };

 void app_main (void *argument) {

 sem1 = osSemaphoreNew(5, 0, &semAttr_SEM1);

The first task waits for a token to be sent to the semaphore.

 __NO_RETURN void led_Thread1 (void *argument) {

 for (;;) {
 osSemaphoreAcquire(sem1, osWaitForever);
 LED_On(1);
 osSemaphoreAcquire(sem1, osWaitForever);
 LED_Off(1);
 }

While the second task periodically sends a token to the semaphore.

 __NO_RETURN void led_Thread2 (void *argument) {

 for (;;) {
 osSemaphoreRelease(sem1);
 LED_On(2);
 osDelay(500);
 osSemaphoreRelease(sem1);
 LED_Off(2);
 osDelay(500);
 }}

Build the project and start the debugger

Set a breakpoint in the led_Thread2 task

Run the code and observe the state of the threads when the breakpoint is reached.

Fig 46 Breakpoint on the semaphore release call in
led_Thread2

Now led_thread1 is blocked waiting to acquire a token from the semaphore. led_Thread1 has been
created with a higher priority than led_thread2 so as soon as a token is placed in the semaphore it will
move to the ready state and pre-empt the lower priority task and start running. When it reaches the
osSemaphoreAcquire() call it will again block.
Now block step the code (F10) and observe the action of the threads and the semaphore.

Fig 47 Led_Thread1 is waiting to acquire
a semaphore

Exercise 12 Multiplex

In this exercise we will look at using a semaphore to control access to a function by creating a
multiplex.

 In the Pack Installer select “Ex 12 Multiplex” and copy it to your tutorial directory.

The project creates a semaphore called semMultiplex which contains one token. Next, six instances of
a thread containing a semaphore multiplex are created.

Build the code and start the debugger

Open the Peripherals → General Purpose IO → GPIOB window

Run the code and observe how the tasks set the port pins

As the code runs only one thread at a time can access the LED functions so only one port pin is set.

Exit the debugger and increase the number of tokens allocated to the semaphore when it is
created

 semMultiplex = osSemaphoreNew(5, 3,&semAttr_Multiplex);

Build the code and start the debugger

Run the code and observe the GPIOB pins

Now three threads can access the led functions ‘concurrently’.

Exercise 13 Rendezvous

In this project we will create two tasks and make sure that they have reached a semaphore rendezvous
before running the LED functions.

 In the Pack Installer select “Ex 13 Rendezvous” and copy it to your tutorial directory.

Build the project and start the debugger.

Open the Peripherals\General Purpose IO\GPIOB window.

Run the code

Initially the semaphore code in each of the LED tasks is commented out. Since the threads are not
synchronised the GPIO pins will toggle randomly.

Exit the debugger

Un-comment the semaphore code in the LED tasks.

Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions ‘concurrently’.

Exercise 14 Semaphore Barrier

In this exercise we will use semaphores to create a barrier to synchronise multiple tasks.

In the Pack Installer select "Ex 14 Barrier" and copy it to your tutorial directory.

Build the project and start the debugger.

Open the Peripherals\General Purpose IO\GPIOB window.k

Run the code.

Initially, the semaphore code in each of the threads is commented out. Since the threads are not

synchronised the GPIO pins will toggle randomly like in the rendezvous example.

Exit the debugger.

Remove the comments on lines 62, 75, 80 and 93 to enable the barrier code.

Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions ‘concurrently’.

Exercise 15 Mutex
In this exercise our program writes streams of characters to the microcontroller UART from different
threads. We will declare and use a mutex to guarantee that each thread has exclusive access to the
UART until it has finished writing its block of characters.

In the Pack Installer select "Ex 15 Mutex" and copy it to your tutorial directory.

This project declares two threads which both write blocks of characters to the UART. Initially, the
mutex is commented out.

void uart_Thread1 (void *argument) { uint32_t

i;

 for (;;) {

 //osMutexAcquire(uart_mutex, osWaitForever);

 for(i=0;i<10;i++) SendChar('1');

 SendChar('\n');

 SendChar('\r');

 //osMutexRelease(uart_mutex);

 }}

In each thread the code prints out the thread number. At the end of each block of characters it then
prints the carriage return and new line characters.

Build the code and start the debugger.

Open the UART1 console window with View\Serial Windows\UART #1

Fig 48 Open the UART console window

Start the code running and observe the output in the console window.

Fig 50 The mis-ordered serial output

Here we can see that the output data stream is corrupted by each
thread writing to the UART without any accessing control.

Exit the debugger.

Uncomment the mutex calls in each thread.

Build the code and start the debugger.

Observe the output of each task in the console window.

Fig 49 Order restored by using a mutex

Now the mutex guarantees each task exclusive access to the UART while it writes each block of
characters.

Exercise 16 Message queue
In this exercise we will look at defining a message queue between two threads and then use it to send

process data.

 In the Pack Installer select “Ex 16 Message Queue” and copy it to your tutorial directory.

Open Main.c and view the message queue initialization code.

 osMessageQId Q_LED; osMessageQDef

(Q_LED,0x16,unsigned char); osEvent result; int main

(void) {

 LED_Init ();

 Q_LED = osMessageCreate(osMessageQ(Q_LED),NULL);

We define and create the message queue in the main thread along with the event structure.

 osMessagePut(Q_LED,0x1,osWaitForever);

 osDelay(100);

Then in one of the threads we can post data and receive it in the second.

 result = osMessageGet(Q_LED,osWaitForever);

 LED_On(result.value.v);

Build the project and start the debugger.

Set a breakpoint in led_thread1.

Fig 53 Set a breakpoint on the
receiving thread

Now run the code and observe the data as it arrives.

Exercise 17 Message queue
In the Pack Installer select “Ex 17 Message Queue” and copy it to your tutorial directory.

Open Main.c and view the message queue initialization code.

Led_Thread2 updates the message structure and posts a new message into the queue.

Led_Thread1 reads the queue and writes the transferred data to the LED.

Exercise 18 Zero Copy Mailbox

This exercise demonstrates the configuration of a memory pool and message queue to transfer
complex data between threads.

In the Pack Installer select “Ex 18 Memory Pool” and copy it to your tutorial directory.

This exercise creates a memory pool and a message queue. A producer thread acquires a buffer from
the memory pool and fills it with data. A pointer to the memory pool buffer is then placed in the
message queue. A second thread reads the pointer from the message queue and then accesses the
data stored in the memory pool buffer before freeing the buffer back to the memory pool. This allows
large amounts of data to be moved from one thread to another in a safe synchronized way. This is
called a ‘zero copy’ memory queue as only the pointer is moved through the message queue, the
actual data does not move memory locations.

At the beginning of main.c the memory pool and message queue are defined.

static const osMemoryPoolAttr_t memorypoolAttr_mpool ={

 .name = "memory_pool",

};

void app_main (void *argument) {

 mpool = osMemoryPoolNew(16, sizeof(message_t),&memorypoolAttr_mpool);

 queue = osMessageQueueNew(16,4, NULL);

 osThreadNew(producer_thread, NULL, &ThreadAttr_producer);

 osThreadNew(consumer_thread, NULL, &ThreadAttr_consumer);

}

In the producer thread acquire a message buffer, fill it with data and post a testData++;

while (1){

 if(testData == 0xAA){

 testData = 0x55;

 }

 else{

 testData = 0xAA;

 }

 message = (message_t*)osMemoryPoolAlloc(mpool,osWaitForever); //Allocate a memory pool buffer

 for(index =0;index<8;index++){

 message->canData[index] = testData;
 }

osMessageQueuePut(queue, &message,NULL, osWaitForever);
osDelay(1000);

 }

Then in the consumer thread we can read the message queue to get the next pointer and then
access the memory pool buffer. Once we have used the data in the buffer it can be released back to
the memory pool.

 while (1) {

 osMessageQueueGet(queue,&message,NULL,osWaitForever);

 LED_SetOut((uint32_t)message->canData[0]);
 osMemoryPoolFree(mpool, message);

 }

Build the code and start the debugger.

Place breakpoints on the osMessagePut and osmessageGet functions.

Run the code and observe the data being transferred between the threads.

Fig 54 Set breakpoints on the
sending and receiving threads

	Exercise 1 A first CMSIS-RTOS2 project
	Exercise 2 Creating and managing threads
	Exercise 3 Memory Model
	Exercise 4 Multiple thread instances
	Exercise 5 Joinable threads
	Exercise 6 Time Management
	Exercise 7 Virtual timer
	Exercise 8 Idle Thread
	Exercise 9 Thread Flags
	Exercise 10 Event Flags
	Exercise 11 Semaphore Signalling
	Exercise 12 Multiplex
	Exercise 13 Rendezvous
	Exercise 14 Semaphore Barrier
	Exercise 15 Mutex
	Exercise 16 Message queue
	Exercise 17 Message queue
	Exercise 18 Zero Copy Mailbox

