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Abstract 

This application note explains the features that are available in CMSIS and MDK to utilize the secure and non-

secure domains in the Armv8-M architecture. It contains several programming examples, including an RTOS 

application that shows the interaction of non-secure thread execution with libraries that are provided by the secure 

domain of an Armv8-M system. 

Prerequisites 

MDK v5.22 provides support for creating and debugging secure and non-secure applications for Armv8-M based 

devices, especially for Arm Cortex-M23 and Arm Cortex-M33. To be able to use the examples provided in this 

application note, you need to have a valid license for MDK-Professional and have the following software packs 

installed: ARM.CMSIS.5.0.11.pack (or higher). Note that there is an evaluation version available for MDK-

Professional. 
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Introduction 

Embedded system programmers face demanding product requirements that include cost sensitive hardware, 

deterministic real time behavior, low-power operation, and secure asset protection. As time-to-market is critical, 

Arm provides a set of development tools and software components to accelerate the overall system design. 

Modern applications have a strong need for security. Assets that may require protection are: 

• device communication (using cryptography and authentication methods) 

• secret data (such as keys and personal information) 

• firmware (against IP theft and reverse engineering) 

• operation (to maintain service and revenue) 

Arm® TrustZone® technology is a System on Chip (SoC) and CPU system-wide approach to security. The 

TrustZone for Armv8-M security extension is optimized for ultra-low power embedded applications. It enables 

multiple software security domains that restrict access to secure memory and I/O to trusted software only. 

TrustZone for Armv8-M: 

• preserves low interrupt latencies for both secure and non-secure domains. 

• does not impose code overhead, cycle overhead or the complexity of a virtualization based solution. 

• introduces efficient instructions for calls to the secure domain with minimal overhead. 

Documentation 

This application note focusses on how to use TrustZone for Armv8-M in Keil MDK. If you want to learn more 

about the technology behind it, there are several documents that go into further detail: 

• Armv8-M Security Extensions: Requirements on Development Tools explains concepts implemented in 

compiler toolchains to support the Armv8-M architecture. 

• Secure software guidelines for Armv8-M based platforms lists the requirements when creating secure 

software for an Armv8-M based platform. 

• The Arm C Language Extensions (ACLE) for Armv8-M enables the Armv8-M Security Extension to 

build a secure image, and to enable a non-secure image to call a secure image. This document includes 

details of a possible compiler implementation. 

• The Armv8-M Architecture Reference Manual gives a complete overview of the Armv8-M architecture. 

The following sections put a spotlight on some of the aspects that are of special interest to the software 

developer. 

Example projects 

The ARM:CMSIS software pack contains the following example projects that show TrustZone programming. Use 

the Pack Installer to locate and copy the TrustZone project examples. Refer to the page for further details. 

 

Example Description Page 

TrustZone for Armv8-M 

No RTOS 

bare-metal secure/non-secure example without RTOS 

 

17 

TrustZone for Armv8-M 

RTOS 

secure/non-secure RTOS example with thread context management 

 

21 

TrustZone for Armv8-M 

RTOS Security Tests 

secure/non-secure example that utilizes security faults to restart a 

system 

22 

 

http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf
https://developer.arm.com/products/architecture/m-profile/docs/100720/latest/secure-software-guidelines
https://developer.arm.com/products/architecture/m-profile/docs/100739_0100/latest/the-arm-c-language-extensions-acle-for-armv8m
https://developer.arm.com/products/architecture/m-profile/docs/ddi0553/latest/armv8-m-architecture-reference-manual
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Armv8-M programmer’s model 

Figure 1 shows the memory view for the secure state. In the secure state, all memory and peripherals can be 

accessed. The system control and debug area provides access to secure peripherals and non-secure peripherals 

that are mirrored at a memory alias. 

Code that is executed from a secure region (secure code) is executed in secure state and can access memory in 

both secure and non-secure regions. 

The secure peripherals are only accessible during program execution in secure state. The Security Attribution 

Unit (SAU) configures the non-secure memory, peripheral, and interrupt access. A secure MPU (memory 

protection unit), secure SCB (system control block), and secure SysTick timer are available as well. 

The system supports two separate interrupt vector tables for secure and non-secure code execution. This interrupt 

assignment is controlled during secure state code execution via the NVIC (nested vector interrupt controller). 

 
Figure 1 Secure memory map 

Note: CMSIS-Core defines an additional file (partition_<device>.h) that is used to setup the SAU. Please 

refer to CMSIS-Core extensions on page 5. 

Figure 2 shows the memory view for the non-secure state. This memory view is similar to the classic Cortex-M 

memory map. Access to any secure memory or peripheral space triggers a security exception that executes a 

handler in secure state. 

Code that is executed from a non-secure region (non-secure code) is executed in non-secure state and can only 

access memory in non-secure regions. 

 
Figure 2 Non-secure memory map 
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Attempts to access secure regions from non-secure code or a mismatch between the (secure or non-secure) code 

that is executed and the security state of the system results in a fault exception. 

Figure 3 shows the register view of an Armv8-M system with TrustZone. As the general purpose registers can be 

accessed from any state, function calls between the states use these registers for parameter and return values. 

The register R13 is the stack pointer alias, and the actual stack pointer (PSP_NS, MSP_NS, PSP_S, MSP_S) 

accessed depends on the state (secure/non-secure) and the mode (handler=exception/interrupt execution or 

thread=normal code execution). 

Each stack pointer has an optional limit register (PSPLIM_NS, MSPLIM_NS, PSPLIM_S, MSPLIM_S) used to 

trap stack overflows triggering a UsageFault exception. 

An Armv8-M system with TrustZone has an independent CONTROL register for each state (secure or non-

secure). The interrupt/exception control registers (PRIMASK, FAULTMASK, BASEPRI) are banked between the 

states, however the interrupt priority for the non-secure state can be lowered so that secure interrupts have always 

a higher priority. 

The core registers of the current state are accessed using the standard core register access functions. In secure 

state all non-secure registers are accessible. 

 
Figure 3 Registers 

CMSIS-Core extensions 

CMSIS-Core implements the basic run-time system for a Cortex-M device and gives the user access to the 

processor core and the device peripherals. The CMSIS-Core files are extended by the system partition header file 

partition_<device>.h which defines the initial setup of the non-secure memory map during system start in 

the secure state. 

 
Figure 4 CMSIS-Core files 
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This file contains the initial setup of the TrustZone hardware in an Armv8-M system. SystemInit calls the 

function TZ_SAU_Setup, which uses the settings in this file to initialize the Security Attribution Unit (SAU) and 

to define non-secure interrupts (register NVIC_INIT_ITNS). It performs the following initialization tasks: 

• Provide settings for the SAU CTRL register. 

• Configure the SAU Address Regions. 

• Configure device-specific deep sleep and exception settings. 

• Configure device-specific interrupt target settings. 

Secure and non-secure domains 

Figure 5 shows an embedded application that is 

split into a User project (executed in non-secure 

state) and a Firmware project (executed in 

secure state). 

System Start: after power-on or reset, an 

Armv8-M system starts code execution in the 

secure state. The access rights in the SAU for the 

non-secure state are configured. 

User Application: control can be transferred to 

the non-secure state to execute user code. This 

code can only call functions in the secure state, 

which are marked for execution with the SG 

(secure gate) instruction and additional memory 

attributes. Any other attempt to access memory 

or peripherals that are assigned to the secure state 

triggers a security exception. 

Firmware callbacks: code running in the secure state can execute code in the non-secure state using call-back 

function pointers. For example, a communication stack (protected firmware) could use an I/O driver that is 

configured in user space. 

Program execution in the secure state is further protected by TrustZone hardware from software failures. For 

example, an Armv8-M system may implement two independent SYSTICK timers which allow stopping code 

execution in non-secure state in case of timing violations. Also, function pointer callbacks from secure state to 

non-secure state are protected by a special CPU instruction and the address LSB 0 which prevents executing code 

in non-secure state accidentally. 

For a real use-case refer to “Example: TrustZone for Armv8-M No RTOS” on page 17. 

  

Figure 5 Secure/non-secure embedded application 



AN291 – Using TrustZone on Armv8-M  Copyright © 2019 Arm Limited. All rights reserved 

feedback@keil.com  keil.com/appnotes/docs/apnt_291.asp 7 

Writing secure software 

Even though the Armv8-M architecture offers specific features and instructions designed to improve the security 

of the device, if the software running contains bugs or design flaws, the whole system security is put at risk. As 

always, the entire system security depends on the security of the weakest link of the chain. Refer to the document 

Secure software guidelines for Armv8-M based platforms for more information. 

There are three main potential attacks to an Armv8-M system: 

• Leaking secret information in registers when switching from a secure to a non-secure state 

• Not checking pointers passed from the non-secure state could potentially give access to secure memory 

• Changing non-secure memory while in secure state 

Return from the secure to the non-secure state 

The compiler uses: 

• Registers R0 to R3 to pass parameters and return values. 

• Registers R4 to R12 during function execution. The called function restores these registers. 

As registers R0 to R3 are not normally cleared because they are used for parameters and return values, secure 

information might leak to the callee function when returning to non-secure state. 

Example: 

Secure state Non-secure stare 

void decrypt(int32_t *data) { 

    key = SECRET; 

    // do the work 

} 

void spy_function() { 

    decryt(NULL); 

    print_content_of_registers(); 

} 

 

To avoid such an exploit, you need to add the cmse_nonsecure_entry attribute to the decrypt function: 

void decrypt(int32_t *) __attribute__((cmse_nonsecure_entry)); 

 

When this attribute is applied, Arm Compiler 6 clears registers R0 to R3 and the status flag when used. This 

ensures that information cannot leak via the CPU registers to the non-secure state. 

Obtain trusted data from non-secure code 

When secure code has to access non-secure memory using an address calculated by the non-secure state, it cannot 

trust that the address lies in a non-secure memory region. 

TT instruction 

To allow software to determine the security attribute of a memory location, the Test Target (TT) instruction is 

used. TT is used to check the access permissions, different security states and 

privilege levels that a pointer might have for a specific target address.  

When executed in the secure state, the result of this instruction is extended to 

return the Security Attribution Unit (SAU) and Implementation Defined 

Attribution Unit (IDAU) configurations at the specific address. 

For each memory region defined by the SAU and IDAU, there is an associated 

region number that is generated by the SAU or by the IDAU. This region number 

is used by software to determine if a contiguous range of memory shares 

common security attributes.  

The TT instruction returns the security attributes and region number, and the 

MPU region number, from an address value. By using a TT instruction on the start and end addresses of the 

memory range, and identifying that both reside in the same region number, software can quickly determine that 

the memory range, for example, for data array or data structure, is located entirely in non-secure space. 

https://developer.arm.com/products/architecture/m-profile/docs/100720/latest/secure-software-guidelines
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The TT instruction is useful for determining the security state of the MPU at that address. Although the instruction 

cannot be accessed in C/C++ code there are several intrinsic functions which make this functionality available to 

the developer. 

Intrinsic Semantics 
cmse_address_info_t cmse_TT(void *p) Generates a TT instruction. 
cmse_address_info_t cmse_TT_fptr(p) Generates a TT instruction. The argument p can be any 

function pointer type. 
cmse_address_info_t cmse_TTT(void *p) Generates a TT instruction with the T flag. 
cmse_address_info_t cmse_TTT_fptr(p) Generates a TT instruction with the T flag. The argument p 

can be any function pointer type. 

The result of the TT instruction is described by a C type containing bit-fields. This type is used as the return type 

of the TT intrinsics. 

Address range check intrinsic 

Checking the result of the TT instruction on an address range is essential for programming in C. It is used to check 

permissions on objects larger than a byte. The address range check intrinsic can be used to perform permission 

checks on C objects. 

Intrinsic Semantics 
*cmse_check_adress_range (void *p, 

size_t size, int flags) 
Address range check intrinsic. It checks the address range 

from p to p + size – 1. 
*cmse_check_pointed_object (void *p, 

int flags) 
Returns the same value as 
cmse_check_address_range(p, sizeof(*p), f) 

 

The cmse_check_adress_range intrinsic operates under the assumption that the configuration of the SAU, 

IDAU, and MPU is constrained as follows: 

• An object is allocated in a single region. 

• A stack is allocated in a single region. 

These points imply that a region does not overlap other regions. The TT instruction returns an SAU, IDAU, and 

MPU region number. When the region numbers of the start and end of the address range match, the complete 

range is contained in one SAU, IDAU, and MPU region. In this case two TT instructions are executed to check the 

address range. 

Example: 

void GetIncidentLog_s (struct IncidentLog_t *IncidentLog_p) __attribute__((cmse_nonsecure_entry)); 

 

void GetIncidentLog_s (IncidentLog_t *IncidentLog_p) { 

  memcpy (IncidentLog_p_ok, &IncidentLog, sizeof (IncidentLog_t)); 

} 

 

You can verify that the target address is within the non-secure memory region using the 

cmse_check_adress_range intrinsic: 

void GetIncidentLog_s (IncidentLog_t *IncidentLog_p) { 

  struct IncidentLog_t *IncidentLog_p_ok; 

 

  IncidentLog_p_ok = cmse_check_address_range (IncidentLog_p, sizeof(IncidentLog_t), CMSE_NONSECURE); 

  if (IncidentLog_p_ok != NULL)  { 

    /* requested copy range is completely in non-secure memory */ 

    memcpy (IncidentLog_p_ok, &IncidentLog, sizeof (IncidentLog_t)); 

  } 

  else 

  { 

      //do something else 

  } 

} 
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Asynchronous modifications to currently processed data 

Secure code should never trust non-secure data, as it may be modified by interrupt handlers. High priority 

interrupts in non-secure state can interrupt the secure code execution and change non-secure data. 

Example: 

void setup_entry (struct config *c, int value) { 

    if (c->index > 0 && c->index < sizeof (array)) { 

        array[c->index] = value; 

    } 

} 

 

To overcome this situation, copy non-secure data before validation and use the volatile attribute to disable 

potential compiler access optimizations: 

void setup_entry (volatile struct config *c, int value) { 

    int index_s = c->index; 

    if (index_s > 0 && index_s < sizeof (array)) { 

        array[index_s] = value; 

    } 

} 

 

CMSIS-RTOS v2 for Armv8-M 

A Real-Time Operating System (RTOS) is required frequently for applications that perform multiple tasks 

simultaneously. These tasks are executed by threads that operate in a quasi-parallel fashion. 

It is certainly possible to create real-time applications without an RTOS (by executing one or more tasks in a 

loop) but usually there are numerous scheduling, maintenance, and timing issues that can be easily solved by 

using an RTOS. For example, an RTOS enables flexible scheduling of system resources like CPU and memory, 

and offers methods to communicate between threads. 

CMSIS-RTOS v2 is a full-featured RTOS for non-secure applications and supports function calls to the secure 

state and callback events from the secure state. It manages microcontroller resources and implements the concept 

of parallel threads that run concurrently. 

To reduce the potential surface for hackers and to avoid unnecessary standardization, CMSIS-RTOS is running in 

the non-secure state and its functionality is also only available to non-secure software. This is acceptable as most 

security related software components do not require RTOS functionality. 

To utilize the TrustZone for Armv8-M, it is necessary to split the RTOS into portions that execute in the 

non-secure and in the secure state of the processor: 

 

The secure state provides data and firmware protection and a system monitor for operation protection. This 

system monitor includes an additional time scheduler using the secure SysTick timer and runs on the secure Main 

Stack Pointer (MSP_S) the at highest interrupt priority. 
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RTOS thread context management 

To provide a consistent RTOS thread context management for TrustZone for Armv8-M across the various real-

time operating systems (RTOS), CMSIS-CORE includes the header file tz_context.h with API definitions. A 

non-secure RTOS application calling secure library modules requires the management of the secure stack space. 

Since secure registers cannot be accessed by an RTOS running in a non-secure state, secure functions implement 

the thread context switch. 

As the non-secure and secure parts of an application are separated, the API for managing the secure stack space 

should be standardized. Otherwise the secure library modules would force the non-secure application to use a 

matching RTOS implementation. 

 

In non-secure state, the task scheduler (RTOS_NS) is executed and all threads are started. Thread execution starts 

in non-secure state. The complete OS function API is available to code running in the non-secure state. 

To allocate the context memory for threads, a non-secure RTOS kernel calls the interface functions defined by the 

header file tz_context.h. The interface functions themselves are part of the secure application: 

• TZ_InitContextSystem_S: initialize the secure context memory system; this function is called during 

RTOS initialization. 

• TZ_AllocModuleContext_S: allocate context memory for calling secure software modules; this function 

is called on the creation of a thread. 

• TZ_FreeModuleContext_S: release previously allocated context memory; this function is called on the 

termination of a thread. 

• TZ_LoadContext_S: load the secure context; this function is called on a thread context switch. 

• TZ_StoreContext_S: store the secure context; this function is called on a thread context switch. 

A minimum implementation should handle the secure stack for the thread execution. However, it is also possible 

to implement the context memory management system with additional features such as access control to secure 

state memory regions using an MPU. CMSIS contains a reference implementation (user code template 

tz_context.c) as part of CMSIS-RTOS v2. 
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Armv8-M debug 

The MDK debugger offers connection to: 

• simulation model of a virtual system  

• target hardware using debug adapters 

For application verification and optimization the MDK debugger offers two access modes to Armv8-M: 

• Secure: with access to the complete system including secure and non-secure programmers views. 

• Non-secure: with access to the non-secure programmers view only. In this mode, there is no way to 

analyze code that is executed in the secure state of the device. 

Simulation model 

Fixed Virtual Platforms (FVPs) enable development of software without requiring access to physical hardware 

and allow software verification prior to silicon availability. The functional behavior of a FVP is equivalent to real 

hardware but sacrifices absolute timing accuracy to achieve fast simulation speed. 

MDK-Professional includes an FVP for Arm Cortex-M23 and Cortex-M33 that simulates a complete system 

including peripherals. 

Secure debug access 

Secure access offers full visibility to all instruction execution, memory regions, and device peripherals. It allows 

to debug and trace the secure and the non-secure software running on the target. Debugging of secure firmware is 

only available in this mode. 

Secure access can be controlled via debug authentication methods. These methods are defined with the element 

<sequence name="DebugDeviceUnlock"> in the PDSC file of the related Device Family Pack. For more 

information refer to the CMSIS documentation under “CMSIS-Pack – Pack Description (*.PDSC) Format – 

Debug Access Sequences”. 

Non-secure debug access 

The non-secure debug view protects the secure memory and peripherals. These are invisible to the debugger in 

non-secure mode. Debug and trace capabilities are limited to non-secure system resources. The following 

limitations can occur: 

• Non-secure debuggers cannot read the register AIRCR.SYSRESETREQS. This means that a 

SYSRESETREQ via the reset button cannot be blocked up front. A fail of  SYSRESETREQ can only be 

detected after trying to do so. 

• Depending on the security measures of the target system, further restrictions in terms of secure/non-

secure memory visibility may apply. 

• Single-steps from non-secure state to secure state can lead to a longer "run" phase if a lot of secure code is 

executed before returning to non-secure state. 

• Pushing the stop button while executing secure code may not immediately take effect. The CPU continues 

to run until entering non-secure state. 

• Memory access breakpoints are never hit, if defined for secure memory. 

• Setting SW breakpoints may fail due to memory access restrictions 

• Setting HW breakpoints has no effect if defined for secure code 

• Resets with reset vector catch can lead to a longer "run" phase if a lot of secure code is executed before 

entering non-secure state for the first time 

• Depending on the target system, limited debug accesses to memory can show as errors ("Cannot access 

memory") or as RAZ/WI 

• The secure MPU and the SAU setup cannot be read by a non-secure debugger 

• CPU peripherals have limited visibility to sensitive information 

• Secure variants of banked CPU registers are not readable 

• Trace of secure resources (secure instructions/secure memory) is skipped 
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• Depending on DWT settings, the DWT cycle counter may be halted throughout secure code execution. 

This can falsify trace timestamps and the states value in the µVision register window, as well as the stop 

watches. 

Armv8-M debug components 

The new Arm Cortex-M23 and Cortex-M33 processor cores use the Arm CoreSight™ technology which 

introduces powerful debug and trace capabilities. The following components are available (depending on the 

implementation): 

Component Use 

Instrumentation Trace Macrocell (ITM) Provides information for annotated trace output; also used for 

simple printf-style debugging 

Data Watchpoint and Trace unit (DWT)  Provides PC (Program Counter) sampling and event counters that 

show CPU cycle statistics, exception and interrupt execution with 

timing statistics, and trace data (data reads and writes used for 

timing analysis) 

Embedded Trace Macrocell (ETM) Provides high bandwidth instruction trace via the TPIU 

Trace Port Interface Unit (TPIU) Provides an output path for trace data from the DWT, 

ITM, and ETM 

Flash Patch and Breakpoint unit (FPB) Supports setting breakpoints on instruction fetches 

These components are optionally available in Arm Cortex-M23 implementations. Please refer to your device’s 

reference manual.  
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Create Armv8-M software projects 

The steps to create a new Armv8-M software project in MDK are: 

• Define the overall system and memory configuration. This has impact on: 

o Setup secure and non-secure projects, optional with multi-project workspace 

o Add startup code and ‘main’ module to secure and non-secure projects. 

o Reflect memory configuration in the CMSIS-Core file partition_<device>.h 

• Define the API of the secure software part in a header file to allow usage from the non-secure part 

• Create the application software for the secure and the non-secure part 

System and Memory configuration 

The definition of the memory layout is typically the first step of the system design. While the memory ranges may 

be reconfigured during the development cycle you should try to get a good initial setup. In the initial project phase 

you should also define the usage of peripherals along with the related interrupts in the secure and non-secure 

domain. 

Memory Description 

0x00000000 .. 

0x001F0000 

ROM for secure program part 

0x00200000 .. 

0x003F0000 

ROM for non-secure program 

part 

0x20000000 .. 

0x201F0000 

RAM for secure program part 

0x20200000 .. 

0x203F0000 

RAM for non-secure program 

part 

0x40000000 .. 

0x40040000 

Peripherals accessible by non-

secure program part 

 

Startup Code 

To add the startup code to your project select the 

software component :Device:Startup available in the 

dialog Manage Run-Time Environment. The startup 

code provides the file partition_<device>.h which 

configures the system and memory setup in the secure 

project.  

 

‘Main’ module 

The user code template ‘main’ module for Armv8-M 

can be used to add the main function for the secure 

project. The define TZ_START_NS specifies the address 

of the vector table in the non-secure part. 

Figure 6 Configuration settings in partition_<device>.h 

Setup secure and non-secure projects 

The following explains the project setup of the secure and non-secure parts. Both projects must use the same 

processor configuration. First, create the secure project as it contains the interface for the non-secure project. It is 

recommended to create both projects in the same base directory (i.e. Test) and use sub-directories for the secure 

and non-secure part. 
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Step 1: Secure project setup 

Create new project: Test\Test_s\Test_s.uvprojx 

Add the software components CMSIS:CORE and 

Device:Startup.  

The partition_<device>.h file is added which 

allows memory layout configuration. 

 

Memory settings under Options for target should 

reflect these memory settings. 

Set the Software Model to “Secure Mode”: 

 

 

Add the source code for the secure project. This 

should include an interface header file with the API 

of the non-secure function entries. 

These entries are available for the non-secure project 

via an import library with the name 

.\Objects\Test_s_CMSE_Lib.o 

The object file name is always created according to 

this rule: <projectname>_CMSE_Lib.o in the 

Objects directory. 

 

Step 2: Non-secure project setup 

Create new project: Test\Test_ns\Test_ns.uvprojx 

Add the software components CMSIS:CORE and 

Device:Startup. 

The partition_<device>.h file is included for 

reference only and ignored in the non-secure project. 

 

 

 

 

 

Memory settings under Options for target should 

reflect the memory settings from the secure project. 

Set the Software Model to “Non-Secure Mode”: 

 

 

Add the source code for the non-secure project. The 

source code should use the same interface header file 

as the secure project. 

Add also the import library (as an “Object file”) 

from the secure project: 

 

 

For good debug experience and CMSIS compatibility set the Compiler options on the C/C++ (AC6) tab to: 

Optimization: “-O1” and Language C: “c99”: 
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Step 3: Multi-project workspace 

A multi-project workspace allows you to 

work on both projects at the same time. 

Create a multi-project workspace project in 

the Test directory and add the project files 

for secure and non-secure projects. The 

secure project must be first in order to 

create the import library for the non-secure 

project. 

 

 

Now you can use Project → Batch Build… and click Build to create both 

projects in sequence. 

 

 

 

Debugger configuration 

Setup µVision debugger in the dialog Options for Target - Debug: 

• Use: “Models Armv8-M Debugger” 

• Disable Load Application at Startup 

• Add a debug initialization file: 

 
• For the  “Models Armv8-M Debugger” open the Settings dialog and enter: 

 
• The Debug.ini file is executed at the debugger start. Enter the following commands: 

LOAD "\\CM33_ns\\Objects\\CM33_ns.axf" incremental      // load non-secure part 

LOAD "\\CM33_s\\Objects\\CM33_s.axf" incremental        // load secure part 

RESET                                                   // reset device 

g, \\CM33_s\main_s\main                                 // run to ‘main’ in secure part 
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Example: TrustZone for Armv8-M No RTOS  

This example project shows a basic TrustZone for Armv8-M setup. The application uses CMSIS and can be 

executed on a Fixed Virtual Platform (FVP) simulation model. It demonstrates function calls between secure and 

non-secure state. The secure application sets the system up and starts non-secure application which calls a secure 

function from the non-secure state. It also calls a secure function that calls back to a non-secure function. All 

variables used in this application can be viewed in the µVision Debugger Watch window. 

Multi-project workspace setup 

Once you have opened the project, you will see two projects in the Project window. The secure project is called 

CM33_s and the non-secure project is CM33_ns. 

 

Figure 7 Secure/non-secure multi-project workspace 

Program Code 

The secure main_s.c file is available as a user code template from the CMSIS pack. No modifications were made 

to this file. Basically, it sets up the non-secure process and main stack pointers, as well as the reset handler and 

then switches to the non-secure state.  

The functions that are available to the non-secure state are declared in interface.h and implemented in interface.c: 

#include <arm_cmse.h>     // CMSE definitions 

#include "interface.h"    // Header file with secure interface API 

 

/* typedef for non-secure callback functions */ 

typedef funcptr funcptr_NS __attribute__((cmse_nonsecure_call)); 

 

/* Non-secure callable (entry) function */ 

int func1(int x) __attribute__((cmse_nonsecure_entry)) {  

  return x+3;  

} 

 

/* Non-secure callable (entry) function, calling a non-secure callback function */ 

int func2(funcptr callback, int x)  __attribute__((cmse_nonsecure_entry))   { 

    funcptr_NS callback_NS;               // non-secure callback function pointer 

    int y; 

     

    /* return function pointer with cleared LSB */ 

    callback_NS = (funcptr_NS)cmse_nsfptr_create(callback); 

     

    y = callback_NS (x+1); 

     

    return (y+2); 

} 
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By definition, a non-secure function call must use function pointers. This is a consequence of separating secure 

and non-secure code into separate executable files. So we first define a function pointer for non-secure callbacks 

with the CMSE attribute cmse_nonsecure_call. This function attribute also tells the compiler to generate 

register-bank saving and clearing code. 

func1 is a non-secure callable or entry function (marked with the CMSE attribute cmse_nonsecure_entry). 

This makes the function callable from the secure or the non-secure state, but while executing, it does not change 

its context. It will be executed in the secure state. 

func2 is different. It is also an entry function, but it uses a function pointer for a callback function. Within the 

function, this function pointer is used as a non-secure callback function pointer. The CMSE intrinsic 

cmse_nsfpt_create returns the value of the callback function pointer, only with its LSB cleared which marks 

it as non-secure. The state switches from secure to non-secure, the function executes, and the result is returned to 

the secure function which then returns it to the non-secure state. 

The main_ns.c file mainly consists of the following code: 

… 

 

volatile int val1, val2; 

 

/* Non-secure function */ 

int func3 (int x);  

 

int func3 (int x)  { 

    return (x+4); 

} 

 

/* Non-secure main() */ 

int main(void) { 

     

    /* Call non-secure callable function func1 */ 

    val1 = func1 (1); 

     

    /* Call non-secure callable function func2 

       with callback to non-secure function func3 */ 

    val2 = func2 (func3, 2); 

     

  while (1); 

} 

 

func3 is a non-secure function. In main(), the non-secure code calls the non-secure callable function func1 and 

the non-secure callable function func2. For func2 it uses func3 as a parameter and this is why in main_s.c the 

function pointer to this function is marked as being non-secure. 
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Call sequence 

Figure 8 shows the call sequence of the No RTOS example including the secure/non-secure state transitions. 

 
Figure 8 No RTOS example secure/non-secure state switches 

Project Build 

To build both projects at once, go to Project → Batch Build… or use the batch build icon . Build both projects 

in one step using the Build button: 

 

The Build Output window will show a successful build without any errors or warnings: 
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Debug non-secure to secure state switches 

The following describes how a non-secure program calls a function in the secure mode. 

1. Set a breakpoint in main_ns.c at line 42. This is the call from non-secure mode to the function func1 in 

the secure memory area. 

2. Click Run  or F5 and the program stops as shown here:  

3. Note the address in the Disassembly window (in this case) is 0x000200256. This is in the non-secure 

memory as specified in the partition_ARMCM33.h header file. At the bottom right this is also 

displayed as  

4. This will also be displayed in the Registers window. 

5. Click on the Disassembly window to bring it in focus. 

TIP: It is important that the Disassembly window remains in focus. This ensures steps are by assembly 

instruction. Otherwise the steps will be by source code line and you won’t be able to see the details of the secure 

state switch. 

Enter secure mode: 

6. Click Step  or F11 once to reach the BL instruction. 

7. This is the Branch with Link to the func1 function in the secure 

memory area. 

8. Click Step  or F11 to execute this BL. 

9. The program will jump to the veneer SG (Secure Gate) instruction 

at 0x0460 as shown below: 

 
Note that this is in the secure memory area. 

10. Click Step  or F11 to execute SG. 

11. The CPU will now change to Secure mode:  

12. Click Step   or F11 to execute B.W. 

13. The program counter will now be at the beginning of the func1 function. 

14. Note the memory address is 0x02F4 which is in the secure area. 

Exit secure state and switch back to non-secure state: 

15. Find the instruction BXNS near line 0x035C at the end of the func1 function. 

16. Set a breakpoint on this line and click Run  or F5. 

17. Unselect the breakpoint as we do not need it. 

18. BXNS is a new Armv8-M instruction that is used when returning from an entry function. 

19. Click Step  or F11 twice. 

20. val1 will show the new value ‘4’. Note that the CPU is back in non-secure mode:  

The cycle is now complete. Go to Debug → Breakpoints (or press Ctrl-B) to unselect the breakpoint you set in 

main_ns.c. 
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Example: TrustZone for Armv8-M RTOS 

The example project TrustZone for Armv8-M RTOS is based on the No RTOS example (explained on page 6) 

but adds an RTOS layer. It differs from the No RTOS example as follows: 

• It uses the Source_NS variant of the software component CMSIS:RTOS2 (API):Keil RTX5 which adds 

RTX in source code format 

• The user code template tz_context.c is added to provide the implementation of the context management 

API 

The only code changes are in the main_ns.c file. Instead of calling the non-secure callable functions, it is running 

RTX with threads that contain the function calls. 

Call sequence 

Figure 9 shows the call sequence of the RTOS example including the secure/non-secure state transitions. 

 
Figure 9 RTOS example secure/non-secure state switches 
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Example: TrustZone for Armv8-M RTOS Security Tests 

The secure/non-secure RTOS example with security test cases and system recovery shows how the Armv8-M 

architecture reacts to potential security attacks. Each attack gets recorded in a log file and the application is 

automatically reset. 

As for the previous project example, the secure project is used to boot the device and then hands-over to the non-

secure project. Here, the user can trigger various security attacks/faults: 

• Illegal secure call (TestCase=0): this attack tries to call directly into secure memory. 

• Stack overflow (TestCase=1): this fault tries to allocate more memory on the stack than available, by 

creating a local variable that is too large. This will cause a PSPLIM error. 

• Division by zero (TestCase=2): this example fault is caused by a division by zero. The fault is only 

generated, when SCB_CCR_DIV_0_TRP is set. 

• Data attack (TestCase=3): tries to let secure domain overwrite secure memory by providing a pointer 

outside of the non-secure memory area. 

• Play dead (TestCase=4): this attack simulates a broken non-secure application which is not returning. A 

secure SysTick watchdog is used to detect this inactivity. 

You can run the example in the µVision debugger without hardware. Build the projects, enter debug mode  

(Ctrl+F5) and run  (F5) the project. In the Command window, enter TestCase=n (see test case numbers 

above): 

  

The last four security incidents will be logged and can be observed in the Watch window: 
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Appendix 

MDK – Microcontroller Development Kit 

Arm Keil MDK is a comprehensive software development solution for Arm-based microcontrollers and includes 

all components that you need to create, build, and debug embedded applications. 

MDK includes the Arm Compiler 6 that combines LLVM technology with highly optimized Arm C libraries. Arm 

Compiler 6 improves compatibility with GNU GCC, covers the latest C language standards including C++11 and 

C++14, and the Armv8-M Security Extensions for secure application programming. 

Software Packs add device support and software components which are used as application building blocks. MDK 

includes CMSIS, RTOS, and royalty-free middleware designed for microcontrollers. Third-party software packs 

provide components for IoT, security, encryption, and networking applications. 

The MDK debugger offers access modes for secure and non-secure application verification and optimization. It 

connects to both simulation models and target hardware using debug adapters. Debugging is accelerated with 

meaningful peripherals dialogs and even while the program is running at full speed, variables can be inspected 

and breakpoints may be altered. Trace capabilities include variable tracking, code coverage, and performance 

analysis. 

Visit www.keil.com/mdk for more information. 

ULINK – Debug/trace adapter series  

A ULINK debug adapter connects the MDK debugger to the target system and allows to program, debug, and 

analyze applications. Serial-wire trace offers event and timing information on interrupt execution, RTOS thread 

scheduling, code annotations, and variable access. Streaming trace utilizes the ETM technology for non-intrusive 

performance analysis and complete code coverage during system validation with real-time code execution. 

Visit www.keil.com/ulink for more information. 

CMSIS – Cortex Microcontroller Software Interface Standard 

CMSIS provides industry standard software support for the Cortex-M series and includes an open source software 

framework with processor HAL, DSP library, and RTOS kernel. CMSIS-Pack defines the distribution of device 

support and software components and is widely adopted in the industry. 

CMSIS Version 5 is extended for the Armv8-M architecture including access to TrustZone hardware security 

extensions. The RTOS API standardizes access to the secure domain which ensures software compatibility across 

compliant real-time operating systems. The RTX reference implementation is a full featured real-time operating 

system for non-secure applications that interfaces to the secure domain for data and firmware protection. 

Visit www.keil.com/cmsis for more information. 

http://www.keil.com/mdk
http://www.keil.com/ulink
http://www.keil.com/cmsis
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Books 

• Free! Getting Started with MDK 5:   www.keil.com/mdk5/install. 

• A list of books on Arm processors is found at:    www.arm.com and search for books 

• µVision® contains a window titled Books. Many documents including data sheets are located there. 

• The Definitive Guide to the Arm Cortex-M0/M0+ ISBN 978-0123854773 

• The Definitive Guide to the Arm Cortex-M3/M4 ISBN 978-0124080829 

• Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano. 

Application notes 

• Arm Compiler Qualification Kit:    www.keil.com/safety 

• Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf 

• CAN Primer using NXP LPC1700:   www.keil.com/appnotes/files/apnt_247.pdf  

• CAN Primer using the STM32F Discovery Kit  www.keil.com/appnotes/docs/apnt_236.asp 

• Segger emWin GUIBuilder with µVision  www.keil.com/appnotes/files/apnt_234.pdf 

• Porting an mbed project to Keil MDK   www.keil.com/appnotes/docs/apnt_207.asp 

• MDK Compiler Optimizations    www.keil.com/appnotes/docs/apnt_202.asp 

• CMSIS-RTOS RTX in MDK:    C:\Keil_v5\ARM\Pack\ARM\CMSIS\ 

• Barrier Instructions     Search for DAI0321A on www.arm.com 

• Lazy Stacking on the Cortex-M4   Search for DAI0298A on www.arm.com 

• Cortex-M Processors for Beginners:   http://community.arm.com/docs/DOC-8587 

• Arm CoreSight:     www.keil.com/coresight 

• Sending ITM printf to external Windows applications:   www.keil.com/appnotes/docs/apnt_240.asp 

• Migrating from Cortex-M4 to Cortex-M7 Processors: www.keil.com/appnotes/docs/apnt_270.asp 

• ROM Self-Test in MDK:    www.keil.com/appnotes/docs/apnt_277.asp 

• Using ST-Link/V2 and MDK:    www.keil.com/appnotes/docs/apnt_286.asp 

Useful Arm websites 

• CMSIS Standards:     www.arm.com/cmsis/ www.keil.com/cmsis/ 

• Keil Forums:       www.keil.com/forum 

• Arm Developer:      https://developer.arm.com/embedded 

• Arm University Program:      www.arm.com/university 

• Arm mbed:      www.mbed.com 

Keil Direct Sales In USA: sales.us@keil.com or 800-348-8051.  Outside the US:  sales.intl@keil.com 

Keil Distributors:  See www.keil.com/distis/   

Keil Technical Support in USA: support.us@keil.com or 800-348-8051.  Outside the US:  support.intl@keil.com. 

http://www2.keil.com/mdk5/
http://www.arm.com/
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.arm.com/
http://www.arm.com/
http://community.arm.com/docs/DOC-8587
http://www.keil.com/coresight/coresight-connectors
http://www.keil.com/appnotes/docs/apnt_240.asp
http://www.keil.com/appnotes/docs/apnt_270.asp
http://www.keil.com/appnotes/docs/apnt_277.asp
http://www.keil.com/appnotes/docs/apnt_286.asp
http://www.arm.com/cmsis/
http://www.keil.com/cmsis/
http://www.keil.com/forum
https://developer.arm.com/embedded
http://www.arm.com/university
http://www.mbed.com/
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.keil.com/distis/
mailto:support.us@keil.com
mailto:support.intl@keil.com
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