
User Guide

 Version 5.0.0.P1

 Published January 25, 2023

i

Table of Contents

About this guide .. vii

Conventions .. viii

Feedback .. viii

Chapter 1: Introducing the PX5 RTOS .. 1

How the PX5 RTOS benefits you ... 1

Why use an RTOS? ... 2

The PX5 RTOS is here to help! .. 5

Chapter 2: Brief history of POSIX pthreads .. 6

Why pthreads for Embedded? ... 7

Chapter 3: PX5 RTOS Installation and Use .. 8

3 Simple Steps ... 8

PX5_RTOS_Binding_User_Guide.pdf ... 9

Defined PX5 Symbol .. 9

Configuration Options for the PX5 RTOS ... 9

Using Configuration Options .. 12

Troubleshooting ... 13

Version Information .. 13

Long Term Support (LTS) .. 14

Contact Us ... 14

Chapter 4: PX5 RTOS Safety and Security .. 16

Hardware Safety & Security Features .. 16

Software Safety & Security Features ... 18

PX5 RTOS Pointer/Data Verification (PDV) ... 18

Run-Time Stack Checking & Verification ... 18

Application Best Practices .. 19

Chapter 5: PX5 RTOS Pointer/Data Verification ... 21

Default Verification Code ... 21

Important Information Verified .. 22

Enabling PDV ... 22

PDV Overhead ... 23

Chapter 6: PX5 RTOS Functional Overview ... 24

ii

Composition ... 25

Namespace .. 25

Native pthreads Implementation... 25

pthreads API Extensions .. 25

Internal Memory Management ... 25

Run-time Stack Checking/Verification .. 27

Central Error Handling ... 27

Scheduling Policy ... 28

Thread Priorities ... 28

Thread States... 28

System Objects .. 29

Condition Variables .. 30

Message Queues ... 30

Mutexes ... 31

Semaphores ... 32

Signals ... 33

Pthread Extensions .. 34

Fastqueues .. 34

Event Flags .. 35

Memory Pools .. 35

Ticktimer Services .. 36

Chapter 7: PX5 RTOS API definitions... 37

clock_getres ... 38

clock_gettime ... 40

clock_settime ... 42

mq_close .. 44

mq_getattr .. 46

mq_open .. 48

mq_receive .. 51

mq_send .. 54

mq_setattr .. 57

mq_timedreceive .. 59

mq_timedsend.. 62

nanosleep .. 65

pthread_attr_destroy .. 68

pthread_attr_getdetachstate .. 70

pthread_attr_getstackaddr ... 72

pthread_attr_getstacksize .. 74

pthread_attr_init ... 76

pthread_attr_setdetachstate .. 78

pthread_attr_setstackaddr ... 80

iii

pthread_attr_setstacksize .. 82

pthread_cancel... 84

pthread_cleanup_pop .. 86

pthread_cleanup_push ... 88

pthread_cond_broadcast ... 90

pthread_cond_destroy ... 92

pthread_cond_init ... 94

pthread_cond_signal .. 96

pthread_cond_timedwait .. 98

pthread_cond_wait ... 101

pthread_condattr_destroy .. 103

pthread_condattr_getpshared .. 105

pthread_condattr_init ... 107

pthread_condattr_setpshared .. 109

pthread_create ... 111

pthread_detach .. 114

pthread_equal .. 116

pthread_exit ... 118

pthread_join ... 120

pthread_kill ... 122

pthread_mutex_destroy ... 124

pthread_mutex_init ... 126

pthread_mutex_lock ... 128

pthread_mutex_trylock ... 130

pthread_mutex_unlock ... 132

pthread_mutexattr_destroy .. 134

pthread_mutexattr_getprotocol .. 136

pthread_mutexattr_getpshared .. 138

pthread_mutexattr_gettype .. 140

pthread_mutexattr_init ... 142

pthread_mutexattr_setprotocol .. 144

pthread_mutexattr_setpshared .. 146

pthread_mutexattr_settype .. 148

pthread_self ... 150

pthread_setcancelstate .. 152

pthread_setcanceltype ... 154

pthread_sigmask .. 156

pthread_testcancel ... 159

px5_errno_get .. 161

px5_errno_set .. 163

px5_mq_extend_open .. 165

iv

px5_mq_extendattr_destroy ... 168

px5_mq_extendattr_getcontroladdr .. 170

px5_mq_extendattr_getcontrolsize .. 172

px5_mq_extendattr_getqueueaddr .. 174

px5_mq_extendattr_getqueuesize ... 176

px5_mq_extendattr_init .. 178

px5_mq_extendattr_setcontroladdr .. 180

px5_mq_extendattr_setqueueaddr ... 182

px5_pthread_attr_getcontroladdr ... 184

px5_pthread_attr_getcontrolsize .. 186

px5_pthread_attr_getname .. 188

px5_pthread_attr_getpriority .. 190

px5_pthread_attr_gettimeslice ... 192

px5_pthread_attr_setcontroladdr ... 194

px5_pthread_attr_setname .. 196

px5_pthread_attr_setpriority .. 198

px5_pthread_attr_settimeslice ... 200

px5_pthread_condattr_getcontroladdr ... 202

px5_pthread_condattr_getcontrolsize .. 204

px5_pthread_condattr_getname .. 206

px5_pthread_condattr_setcontroladdr .. 208

px5_pthread_condattr_setname... 210

px5_pthread_event_flags_clear ... 212

px5_pthread_event_flags_create ... 214

px5_pthread_event_flags_destroy ... 216

px5_pthread_event_flags_set .. 218

px5_pthread_event_flags_trywait... 220

px5_pthread_event_flags_wait .. 222

px5_pthread_event_flagsattr_destroy .. 224

px5_pthread_event_flagsattr_getcontroladdr ... 226

px5_pthread_event_flagsattr_getcontrolsize .. 228

px5_pthread_event_flagsattr_getname .. 230

px5_pthread_event_flagsattr_init ... 232

px5_pthread_event_flagsattr_setcontroladdr ... 234

px5_pthread_event_flagsattr_setname .. 236

px5_pthread_fastqueue_create.. 238

px5_pthread_fastqueue_destroy .. 240

px5_pthread_fastqueue_receive .. 242

px5_pthread_fastqueue_send .. 244

px5_pthread_fastqueue_tryreceive .. 246

px5_pthread_fastqueue_trysend .. 248

v

px5_pthread_fastqueueattr_destroy ... 251

px5_pthread_fastqueueattr_getcontroladdr ... 253

px5_pthread_fastqueueattr_getcontrolsize .. 255

px5_pthread_fastqueueattr_getname .. 257

px5_pthread_fastqueueattr_getqueueaddr .. 259

px5_pthread_fastqueueattr_getqueuesize ... 261

px5_pthread_fastqueueattr_init .. 263

px5_pthread_fastqueueattr_setcontroladdr .. 265

px5_pthread_fastqueueattr_setname ... 267

px5_pthread_fastqueueattr_setqueueaddr .. 269

px5_pthread_information_get .. 271

px5_pthread_memory_manager_enable ... 274

px5_pthread_memory_manager_get ... 276

px5_pthread_memory_manager_set ... 278

px5_pthread_memorypool_allocate ... 280

px5_pthread_memorypool_create.. 282

px5_pthread_memorypool_destroy .. 284

px5_pthread_memorypool_free ... 286

px5_pthread_memorypool_tryallocate ... 288

px5_pthread_memorypoolattr_destroy ... 290

px5_pthread_memorypoolattr_getcontroladdr ... 292

px5_pthread_memorypoolattr_getcontrolsize .. 294

px5_pthread_memorypoolattr_getname .. 296

px5_pthread_memorypoolattr_init .. 298

px5_pthread_memorypoolattr_setcontroladdr .. 300

px5_pthread_memorypoolattr_setname ... 302

px5_pthread_mutexattr_getcontroladdr ... 304

px5_pthread_mutexattr_getcontrolsize .. 306

px5_pthread_mutexattr_getname .. 308

px5_pthread_mutexattr_setcontroladdr .. 310

px5_pthread_mutexattr_setname ... 312

px5_pthread_resume ... 314

px5_pthread_start .. 316

px5_pthread_suspend .. 319

px5_pthread_tick_sleep ... 321

px5_pthread_ticks_get ... 323

px5_pthread_ticktimer_create .. 325

px5_pthread_ticktimer_destroy .. 327

px5_pthread_ticktimer_start ... 329

px5_pthread_ticktimer_stop ... 331

px5_pthread_ticktimer_update ... 333

vi

px5_pthread_ticktimerattr_destroy ... 335

px5_pthread_ticktimerattr_getcontroladdr .. 337

px5_pthread_ticktimerattr_getcontrolsize ... 339

px5_pthread_ticktimerattr_getname ... 341

px5_pthread_ticktimerattr_init .. 343

px5_pthread_ticktimerattr_setcontroladdr .. 345

px5_pthread_ticktimerattr_setname ... 347

px5_sem_extend_init ... 349

px5_semattr_destroy .. 351

px5_semattr_getcontroladdr .. 353

px5_semattr_getcontrolsize ... 355

px5_semattr_getname ... 357

px5_semattr_init ... 359

px5_semattr_setcontroladdr ... 361

px5_semattr_setname .. 363

sched_yield .. 365

sem_destroy .. 367

sem_init .. 369

sem_post ... 371

sem_trywait .. 373

sem_wait .. 375

sigaction ... 377

sigaddset .. 380

sigdelset ... 382

sigemptyset .. 384

sigfillset .. 386

sigismember ... 388

sigpending .. 390

sigtimedwait ... 392

sigwait .. 395

sigwaitinfo .. 397

sleep .. 399

time .. 401

usleep .. 403

Index ... 405

P X 5 R T O S

www.px5rtos.com vii

About this guide

The purpose of this guide is to provide embedded developers with the information
necessary to successfully utilize the PX5 Real-Time Operating System (RTOS). This
guide is organized into a series of chapters as follows:

Chapter 1: Introducing the PX5 RTOS. This chapter briefly introduces
multithreading, pthreads, and the PX5 RTOS with pthreads+ extensions.

Chapter 2: Brief history of POSIX pthreads. This chapter provides a brief
history of POSIX pthreads.

Chapter 3: PX5 RTOS Installation and Use. This chapter provides a high-level
overview of how to install and use the PX5 RTOS.

Chapter 4: PX5 RTOS Safety and Security. This chapter provides an overview
of safety and security in PX5 RTOS applications.

Chapter 5: PX5 RTOS Pointer/Data Verification. This chapter provides an
overview of the unique Pointer/Data Verification capabilities of the PX5
RTOS.

Chapter 6: PX5 RTOS Functional Overview. This chapter provides a functional
overview of the PX5 RTOS.

Chapter 7: PX5 RTOS API Definitions. This chapter describes the various
APIs–both standard pthread APIs and pthreads+ extensions–of the PX5
RTOS.

A

PX5 RTOS

www.px5rtos.com viii

Conventions

Various conventions are used in this guide. C source code function prototypes and
examples are written in courier font. Supplemental documentation, API, and

parameter names are italicized when discussed. There are also several symbols that
are used to highlight important features or topics, as follows:

Symbol Meaning

This is a general information symbol.

The caution symbol indicates that the user should be aware of
important usage scenarios associated with a specific topic or API.

The danger symbol indicates that the user should be aware of the
serious consequences of certain scenarios associated with a
specific topic or API.

This symbol indicates the associated API scenario does not result
in preemption.

This symbol indicates the associated API scenario results in
preemption.

This symbol indicates the associated API scenario results in
suspension.

Feedback

All feedback is greatly appreciated. Please send e-mail feedback to
support@px5rtos.com with "PX5 RTOS User Guide Feedback" in the subject line.

mailto:support@px5rtos.com

PX5 RTOS

1

Chapter 1: Introducing the PX5 RTOS

The Industrial Grade PX5 RTOS is an advanced, 5th generation RTOS designed for the
most demanding embedded applications. Its ultra-small size (< 1KB for minimal use)
allows PX5 RTOS to fit into some of the most memory-constrained devices. Its
ultrahigh-performance (sub-microsecond context switching and API calls on most
microprocessors) and rich determinism make it ideal for the most demanding real-
time needs. PX5 RTOS also boasts best-of-class safety and security. The entire PX5
RTOS code base is rigorously tested (100% C statement and branch decision
coverage testing for every release). In addition, PX5 RTOS also offers Pointer/Data
Verification (PDV), a unique technology for unprecedented run-time function
pointer, system object, buffer, and stack verification. Perhaps most important, PX5
RTOS is simple. The API consists of a native implementation of the POSIX pthreads
standard, which is well known throughout the industry and makes applications
written for PX5 RTOS highly portable to any POSIX pthread implementation–
whether that is Linux or even another RTOS supporting the pthread API. The PX5
RTOS also offers optional POSIX pthreads extensions that are designed specifically
for deeply embedded, real-time applications.

How the PX5 RTOS benefits you

The PX5 RTOS features benefit embedded development in many ways, including the
following:

• Accelerated time-to-market

• Enhanced product quality

• Safer and more secure products

• More portable/reusable application code via industry standard
pthreads API

• Reduced engineering training via pthreads API

• Professional support

Chapter

1

PX5 RTOS

2

Why use an RTOS?

Backing up a bit, it's important to briefly discuss why an RTOS is important in the
first place. Not all embedded applications require an RTOS. Some elementary
applications can perform all of their required processing in a control loop within the
C main function, as the example illustrates below:

int main(void)

{

 while(1)

 {

/* Process primary task. */

process_primary_task();

/* Process secondary task. */

process_secondary_task();

 }

 }

Typically, applications less than 64KB in total memory with no network connectivity
or physical device I/O may be able to use and even benefit from a simple control
loop. The simple control loop technique eliminates the memory and processing
cycles required by a more robust RTOS platform. However, it places all the
responsibility for allocating processor cycles and meeting real-time requirements on
the application code itself. Take, for example, the simple control loop illustrated
above. If the process_primary_task function has a real-time requirement, the
application developer must ensure that the worst-case processing time of the rest
of the control loop is small enough to meet that real-time requirement. This may
not be an easy task. To accomplish this, the developer must thoroughly analyze and
test all code paths before and after the call to process_primary_task. Of course, this
becomes exponentially more difficult as the code size/complexity increase or if new
real-time requirements are added. One might think, "well, I'll just add more calls to
process_primary_task in the control loop, so I don't have to calculate the entire
worst-case processing of the entire loop.” This can temporarily help; however, now
there is extra processing overhead (extra calls to process_primary_task equates to
additional overhead). At some point, this additional overhead can be greater than
the context switching overhead of an RTOS.

PX5 RTOS

3

Waiting for peripheral device I/O (blocking) is another difficult issue to overcome
with a simple control loop design. Suppose process_secondary_task is controlling a
peripheral I/O device and has to wait for the peripheral I/O device to complete its
operation. Indeed, the real-time requirements in process_primary_task could be
adversely affected, and this could be even worse if the wait time is not deterministic.
In this situation, the application developer would likely be forced to create a state
machine inside of process_secondary_task such that it wouldn't ever wait, instead
setting up a state machine such that it could "find its way back" to the peripheral
I/O device operation to check for completion. This state machine processing
necessarily adds complexity and also adds overhead. In contrast, if an RTOS is used,
the thread implementing process_secondary_task can simply suspend (block) in-
line on the peripheral I/O device operation. When the I/O completes, the thread
resumes immediately where it last executed–no complicated state machine to find
its way back, i.e., there is less complexity and overhead.

Finally, development without an RTOS requires every developer to have precise
knowledge of the real-time processing of each component. Not only does this
become exponentially more difficult as the complexity and real-time requirements
increase, it also doesn't scale well as more developers are added to the project. In
contrast, an RTOS makes it possible to encapsulate application components into
threads of varying priorities. For example, the process_primary_task functionality
could simply be encapsulated inside the highest priority thread, and thus nothing
else in the system would interfere with meeting its real-time requirements. Thus,
developers are freed from having to know (and avoid impacting) the system real-
time needs, which lets them focus solely on their particular area of interest.

The following is an example of the control loop converted to operate using the
pthread API:

PX5 RTOS

4

 pthread_t primary_thread_handle;

void * process_primary_task(void * argument)

{

struct sched_param param;

 /* Assuming priority 31 is highest. */

 param.sched_priority = 31;

 /* Raise the priority of the real-time thread. */

 pthread_setschedparam(pthread_self(),SCHED_OTHER, ¶m);

 while(1)

 {

 /* Perform third real-time duties and suspend until more

 work needs to be done. */

 }

}

int main(void)

{

 /* Create a thread for the real-time requirements associated with the

 primary task. */

 pthread_create(&primary_thread_handle, NULL, process_primary_task, NULL);

 /* Relinquish to the primary thread. */

 sched_yield();

 while(1)

 {

 /* Perform the secondary task from the main thread. */

 process_secondary_task();

 }

}

The example shows how easy it is to convert the processing of a control loop
implementation into two threads under an RTOS–where the main loop is now a
lower priority thread, and the processing in process_primary_task is contained
within a higher-priority thread that will preempt whenever it has real-time
processing to accomplish. The beauty of an RTOS-based design is that boundless
new functionality can be added without adversely affecting the real-time processing
in process_primary_task, assuming, of course, that it remains the highest priority
thread.

In summary, an RTOS greatly reduces the complexity of an application–especially in
terms of meeting real-time requirements and elimination of state machines
necessitated from a lack of in-line suspension. It's possible an RTOS can even reduce
overhead–in situations where the control loop deficiencies have necessitated a
significant amount of logic to manage the real-time requirements of the application.
Here are some advantages of using an RTOS in bullet form:

• Enhances application real-time responsiveness

PX5 RTOS

5

• Reduces complexity and makes development easier

• Easier to divide an application into more manageable pieces

• Enables more features and project developers

• Possible reduction of overhead via elimination of polling and
state machines

• Achieve concurrency by enabling other processing while waiting
for blocking I/O

• Enable true parallel processing in symmetric multiprocessing
RTOS environments

The PX5 RTOS is here to help!

As mentioned at the beginning of this chapter, PX5 RTOS combines best-of-class
RTOS technology with the industry standard pthread API. In addition, the PX5 RTOS
provides optional pthreads+ extensions, which add functional enhancements
designed to complement the POSIX pthreads API to better address embedded
multithreading requirements. In summary, the PX5 RTOS provides embedded
developers the best of both worlds–best-of-class RTOS technology united with the
industry standard pthreads API!

PX5 RTOS

6

Chapter 2: Brief history of POSIX pthreads

The Portable Operating System Interface (POSIX) is a family of standards defined
and maintained by IEEE. The basic idea behind POSIX is application portability across
different hardware and operating systems, providing the operating system adheres
to the POSIX API standard. Originally found in UNIX, many of today’s operating
systems support POSIX - most significantly, all Embedded Linux distributions.

The first POSIX standard was the IEEE Std 1003.1-1988 specification and was
released in 1988. The latest POSIX standard was released in 2017 (POSIX.1-2017
IEEE Std 1003.1-2017). Originally, all multitasking in POSIX was process based.
Communicating and switching between processes required significant overhead as
well as significant hardware resources (virtual memory support, large amounts of
memory, super fast processors, etc.). In order to achieve reduced overhead, the
POSIX pthreads specification was introduced in the IEEE Std 1003.1c-1995
specification of 1995. This concept of lightweight multithreading – including thread
synchronization and communication primitives – provided a useful new paradigm
to application developers. With POSIX pthreads, developers could share global
variables and data structures between threads using low-overhead mutual
exclusion to coordinate the access.

The lightweight nature of the POSIX pthreads API make it especially ideal for
resource constrained embedded devices. The POSIX pthread APIs are also relatively
intuitive and easy to use. Take, for example the pthread_create API to create a new
thread with the entry function of “my_thread_entry”:

 pthread_create(&my_thread_handle, NULL, my_thread_entry, NULL);

The pthread create API effectively requires only two elements from the application
developer – a thread handle and an entry function for the thread. Notably, the
pthread_create API is much simpler than most RTOS thread/task creation APIs –
many of which require more parameters as well as the accompanying complexity.

The POSIX pthread standard is also robust. It specifies a plethora of services,
including mutual exclusion, synchronization, and communication primitives. There
are also additional POSIX (not pthreads per-se) APIs that are applicable to resource

Chapter

2

PX5 RTOS

7

constrained embedded systems, including semaphores, message queues, signals,
and time-related services.

Why pthreads for Embedded?

According to some recent surveys, Embedded Linux accounts for nearly 70% of
embedded development. As mentioned previously, Embedded Linux is based on the
POSIX pthread API, which makes pthreads the most well-known and used API in the
embedded industry. Historically, there are many proprietary RTOS APIs in the
embedded space–many of them are quite good. However, they all require
significant developer training, which limits the use (and adoption) of the underlying
RTOS. Proprietary RTOS APIs make application code less portable. Furthermore,
many device makers have both Linux and RTOS-based devices, servicing different
target markets and price points. An RTOS based on the industry standard POSIX
pthreads API solves these problems – reducing developer training and making
application code portable across a wide range of platforms.

PX5 RTOS

8

Chapter 3: PX5 RTOS Installation and Use

Installing and using the PX5 RTOS is ultrasimple. Starting from a simple C main
program, there are conceptually three simple steps to install and start using the PX5
RTOS. Of course, the exact installation is processor/tool specific. Please review the
binding layer documentation for more details.

3 Simple Steps

1. Place the PX5 RTOS distribution into your C main project source directory.

2. The PX5 RTOS distribution contains two main source files, namely px5.c
and px5_binding.s, as well as supporting C header files. Simply add both of
them to your project (IDE or makefile).

3. Modify your C main program to include pthread.h and call
px5_pthread_start in your main program. Next, create a while(1) loop,
since px5_pthread_start upscales the main function into your system’s first
thread!

Your C main program should now look something like the following (PX5
RTOS specific additions in red):

#include “pthread.h”

int main(void)

{

 /* Call PX5 RTOS initialization. */

 px5_pthread_start(1, NULL, NULL);

 /* We are now in the context of a thread. */

 while(1)

 {

 /* All other PX5 API calls are now available! */

 }

}

After these three easy steps, you should be up and running with the PX5 RTOS! To
enable timer related services, simply add a call to px5_timer_interrupt_process
from within the periodic timer interrupt handler.

Chapter

3

PX5 RTOS

9

Typically, there are no linker control file changes required to install and use the
PX5 RTOS. There shouldn’t be any project setting changes either if the PX5 RTOS
source code is placed in the same directory as the C main function source.
Otherwise, if the PX5 RTOS source is placed in another location, you will need to
update the C include paths of your project to point to the PX5 RTOS header files.

Please review the px5_pthread_start API defined later in this guide. This API
provides parameters for run-time identification and memory for object creation. It
also performs important error checking – including verification of the binding
between the px5.c C source and the px5_binding.s assembly code. The return code
of this API should always be checked. For the sake of clarity, we omitted checking
for API return code errors in this simple example.

PX5_RTOS_Binding_User_Guide.pdf

As mentioned previously, please review the PX5_RTOS_Binding_User_Guide.pdf
for more detailed information on specific information pertaining to the operation
of the PX5 RTOS with the processor and development tool you are using –
including binding-specific configuration options. This guide is also where you will
find information about ready-to-run example(s) specific to your processor and
development tool, including guidance on how to enable periodic timer-related
services.

Defined PX5 Symbol

If you include any of the PX5 RTOS include files, the symbol PX5 is defined. This is
useful for cross-platform applications such that conditionals can be placed around
PX5 RTOS extensions.

Configuration Options for the PX5 RTOS

There are a multiple compile-time configuration options for building and using the
PX5 RTOS. The following describes each option in detail (note that processor/tool
specific configuration options are defined in the
PX5_RTOS_Binding_User_Guide.pdf guide):

 Build Option Meaning

PX5_CANCELLATION_POINTS_DISABLE When defined, the cancellation
points in the blocking APIs are
disabled, resulting in improved
performance. This option is not
defined by default.

PX5 RTOS

10

PX5_DEFAULT_PRIORITY When defined, this value overrides
the default threads priority for
thread creation (priority 16 is the
default thread create priority).

PX5_DEFAULT_SIGNAL_MASK When defined, this value overrides
the default signal bit mask of the
main thread (all signals masked -
0xFFFFFFFF).

PX5_DEFAULT_STACK_SIZE When defined, this value overrides
the default stack size, which is
processor-specific (typically on the
order of 1K bytes).

PX5_FUNCTION_POINTER_VERIFY_ENABLE When defined, all function pointers
used internally in the PX5 RTOS are
evaluated against the verification
code that was established when
they were setup (using PDV). This
mechanism helps early detection of
memory corruption – both
intentional and non-intentional.
This option is not defined by
default.

PX5_MEMORYPOOL_VERIFY_ENABLE When defined, all internal PX5 RTOS
memory pool linked-lists are
evaluated against the verification
code that was established when the
memory pool is created. The
verification also occurs as memory
from the pool is allocated or
released. This mechanism helps
early detection of memory
corruption, most usually associated
with the application writing past the
allocated memory. This option is
not defined by default.

PX5_OBJECT_VERIFY_ENABLE When defined, all internal PX5 RTOS
objects (including the global PX5
RTOS data) are evaluated against

PX5 RTOS

11

the verification code that was
established when they were
created (using PDV). This
mechanism helps early detection of
memory corruption – both
intentional and non-intentional.
This option is not defined by
default.

PX5_PARAMETER_CHECKING_DISABLE When defined, basic parameter
checking is disabled (by default
parameter checking is enabled).
This can be used on a per-file basis,
i.e., parameter checking can be
enabled (default) for some
application files and disabled via
this option in other files. This option
is not defined by default.

PX5_SPECIFIC_ERRNO When defined, the PX5 RTOS does
not redefine errno in the applicaton
code. Instead, the px5_errno
symbol is remapped to retrieve the
thread-specific API error
information. The application may
also use the px5_errno_get API
directly. This define is useful in
situations where multiple software
entities have their own definition of
errno. This option is not defined by
default.

PX5_STACK_CHECK_ENABLE When defined, the PX5 RTOS
performs stack size checking,
including update of the minimal
available stack and determining if
the stack has overflowed or is in
imminent danger of an overflow.
This option is not defined by
default.

PX5_STACK_VERIFY_ENABLE When defined, the PX5 RTOS
performs stack integrity checking

PX5 RTOS

12

(using PDV), including verification of
the function call return address
when possible. This option is not
defined by default.

PX5_TICKS_PER_SECOND By default, this option is defined as
1000, representing a 1ms timer
interrupt frequency. However, the
application may use a different
timer interrupt frequency, just as
long as this define is adjusted
accordingly.

PX5_TIME_REMAPPING_DISABLE When defined, the PX5 RTOS does
not remap user time types (e.g.,
time_t and timespec) to the PX5
RTOS equivalents. If this is defined,
the application code would have to
prepend px5_ to any time type
referenced, e.g., px5_time_t and
px5_timespec. This define is useful
in situations where multiple
software entities have their own
definition of time types. This option
is not defined by default.

Using Configuration Options

The PX5 RTOS configuration options mentioned previously may be defined via
project setting of via -D compiler command line options. Alternatively, the
px5_user_config.h in the PX5 RTOS distribution is dedicated for application
use, i.e., it is a safe place to define configuration options for the PX5 RTOS
since it does not change with each new version of the PX5 RTOS.

It is highly recommended to compile the application code with
the same configuration options as used to compile the PX5
RTOS source files (px5.c and px5_binding.s).

PX5 RTOS

13

Troubleshooting

The PX5 RTOS is designed for ease-of-use and reliability, so it’s not likely you will
experience issues. However, if you do experience issues, here are some basic
troubleshooting suggestions that may help:

1. Make sure that the processor/tool-specific examples mentioned in the
PX5_RTOS_Binding_User_Guide.pdf (or supplemental documentation) are
executing normally in your environment.

2. Your application code should always check the return status on all API calls.

3. Be suspicious of any recent change(s).

4. Please make sure that each thread has a large enough stack allocated,
which means that each thread stack must be large enough to hold the
worst-case C function call depth with memory sufficient for all local
variables. Please review the stack checking APIs and functionality described
later in this guide for assistance. Thread stack corruption is often the cause
of unusual run-time problems in any RTOS-based application.

5. If a ready thread isn’t running, ensure that one or more higher priority
threads eventually suspend such that lower priority threads are given a
chance to execute. Remember to use as few priorities as possible, which
will reduce context-switching overhead as well as the potential for thread
starvation.

6. If time-related services are not working, verify that the periodic timer
interrupt is occurring and you are calling px5_timer_interrupt_process
from within the interrupt handler.

7. Set a breakpoint on the PX5 RTOS central error handling function
px5_internal_central_error_process. If the breakpoint is hit, the type of
error, executing threads, current interrupt level, as well as the caller,
should provide valuable debug information.

Version Information

The PX5 RTOS version identification is comprised of four numbers separated by
periods in the general format of V.M.U.P, with the following meaning:

 Version Number Meaning

 V Major version
 M Minor version

PX5 RTOS

14

 U Update version
 P Patch version

The specific version of PX5 you are using can be found near the top of any source
file, as shown below:

The following constants in px5.h also contain the version:

Long Term Support (LTS)

We support major versions for five years (the first number in the version ID).
Minor versions (represented by the second number) are supported for two years.

Contact Us

Please feel free to contact us with any problem – we are glad to help! To make the
request as efficient as possible, please provide the following information:

1. Your name and company name

PX5 RTOS

15

2. Your px5_binding.h and px5.h header files

3. Brief description of the problem

4. Screen shots and any data collection (sometimes a memory display of the
px5_globals data structure is helpful)

The best place to initiate a support ticket is on the PX5 web site:

www.px5rtos.com/support

You may also send an e-mail to:

support@px5rtos.com

You may also contact us by mail and telephone:

PX5
11440 West Bernardo Court, Suite 300
San Diego, CA 92127
Phone: +1 (858) 753-1715

mailto:support@px5rtos.

PX5 RTOS

16

Chapter 4: PX5 RTOS Safety and Security

Today, safety and security for embedded devices are paramount. Although safety
and security are distinct areas, in the embedded PX5 RTOS context, they have a
significant degree of overlap. Memory corruption – either intentional or un-
intentional is the most common source of safety and security issues in embedded
devices. This is also where the PX5 RTOS can make a significant difference. That said,
the PX5 RTOS safety and security features are a piece of a greater defense-in-depth
solution that includes the PX5 RTOS, application software, device hardware, and
other network/cloud entities and their configuration/settings.

Exactly what safety and security mean differ depending on the application. The
safety and security requirements for any specific application are ultimately a
combination of the attack surface as well as what is practical – both from a
technological and business standpoint. Stated another way, embedded safety and
security isn’t a one-size-fits-all but rather a deliberate risk-benefit analysis based on
each specific use case.

Hardware Safety & Security Features

As for hardware safety and security, there are a wide variety of embedded
processors with an even greater variety of safety and security features, the most
common of which are:

1. Anti-tampering. This hardware feature protects the firmware IP of the
device from unauthorized access. It is generally outside the scope of the
PX5 RTOS or application firmware but an important consideration when
selecting hardware.

2. Lock-step execution. This hardware feature employs multiple processors
executing the same code with the same data. The goal being that exact
code execution is guaranteed. Such hardware is mostly found in safety
critical applications. This is effectively invisible to the PX5 RTOS or most of
the application firmware.

3. Anti-glitch. This hardware feature employs circuitry to prevent an attacker
from causing abnormal program execution via manipulating power or

Chapter

4

PX5 RTOS

17

other system signals. This too is generally outside the scope of the PX5
RTOS or application firmware but may be an important consideration
when selecting hardware.

4. Execute only from flash. Most microcontrollers (MCUs) execute
instructions from flash. Some of these MCUs are able to prohibit execution
from RAM, which is recommended to help prevent dynamic insertion of
malicious code in remote execution attacks. This sometimes requires the
application firmware to enable, but otherwise is invisible to the PX5 RTOS
or the application.

5. Hardware stack limit. Some processors have a stack limit register that
guards against memory corruption caused by stack overflow. This is
generally implemented as an additional register and is setup by the PX5
RTOS on each thread context switch.

6. Hardware watchdog timer. Many processors have a non-maskable
hardware watchdog timer. This feature acts as a fail-safe. Under normal
operation, the application code resets the watchdog on a regular basis and
always before its expiration. During abnormal execution, the watchdog is
likely not reset, thus leading to a non-maskable interrupt, which halts the
abnormal execution. Typically, applications will simply reset after a
watchdog expiration.

7. True Random Number Generator (TRNG). Having a TRNG or even more
basic Random Number Generator (RNG) in hardware is very beneficial. This
is most important for networked devices, but it’s also useful for the PX5
RTOS – especially for the unique PX5 RTOS Pointer/Data Verification (PDV)
feature.

8. Memory Management Unit (MMU). This hardware feature enables access
restrictions of various regions of memory. This feature is typically only
available on larger, more powerful processors. This is most often setup
once by the application firmware after reset to map and protect various
memory regions.

9. Memory Protection Unit (MPU). This hardware feature is similar to the
MMU but found in smaller, more resource constrained devices. Again, this
is typically setup by the application firmware after reset to protect various
memory regions. In cases where there isn’t stack limit registers, the MPU
can be used to setup a protected block at the top of each thread’s stack in
order to prevent stack overflow. This functionality would need to be
accomplished inside the PX5 RTOS thread context switching logic.

PX5 RTOS

18

10. Secure Element (SE) or Trusted Platform Module (TPM). For devices that
are network connected, having a SE or TMP allow credentials or other
secrets to be securely isolated from the main application, therefore can
greatly increase the network security of the device and is therefore highly
recommended.

Of course, each of the hardware safety and security features mentioned have an
associated cost – in circuitry, power consumption, size, etc. These costs must go
through the risk-benefit analysis mentioned previously.

Software Safety & Security Features

Some amount of software support is required to utilize the hardware safety and
security features, e.g., setting up the hardware stack limit feature or the MPU to
protect certain memory areas. The PX5 RTOS binding layer is where such support
is typically located. The application firmware may also have logic to support the
various hardware safety and security features.

PX5 RTOS Pointer/Data Verification (PDV)

As for software-only safety and security measures, the PX5 RTOS provides
Pointer/Data Verification (PDV), which is a unique software-only technique to help
detect corruption of important data like function pointers, function return
addresses, internal system objects, allocated memory, etc. PDV utilizes the pointer
or data value, the storage location of the verification code, and the unique run-time
identification provided to px5_pthread_start to create a verification code
(fingerprint) for each important data element during its initialization. Before the
important data is used, it is authenticated against the verification code. If corruption
is detected, the application is alerted via the PX5 RTOS central error handing, at
which point the application can take the necessary measures to respond to the
memory corruption. PDV helps detect memory corruption early and greatly reduces
the chance of unwanted execution associated with function pointer corruption.

Run-Time Stack Checking & Verification

Additional software-only stack safety and security measures are offered by the PX5
RTOS. When enabled, run-time stack checking examines the current stack pointer
upon function entry to check for overflow or imminent overflow, as well as
keeping track of the minimal available amount of stack memory. Simply build the
PX5 RTOS source with PX5_STACK_CHECKING_ENABLE, and each thread’s stack is
checked throughout PX5 RTOS execution. The application may also utilize the
px5_pthread_stack_check API to perform stack checking from the application C
code. Stack verification utilizes PDV to help verify stack integrity – specifically the
caller return address on the stack when supported by the compiler – before

PX5 RTOS

19

returning to the caller of a function. To enable stack verification, simply build the
PX5 RTOS source with PX5_STACK_VERIFY_ENABLE defined.

If a stack corruption or overflow is detected, the central error handling function is
called with a fatal error. If stack checking detects a stack that is at risk of overflow,
the central error handling is called with the appropriate advisory error.

Application Best Practices

In addition to PDV and run-time stack checking, there are also additional
application best practices for enhanced safety and security, as follows:

1. Harden the device firmware. The PX5 RTOS was implemented in a Test
Driven Development (TDD) manner, which basically means the tests are
written before the actual code. Furthermore, by design, the PX5 RTOS
code base must achieve 100% statement and 100% branch/decision
coverage testing before each minor release. We recommend the
application firmware take a similar approach – there is never enough
testing. The more vetted the software is, the safer and more secure it is.

2. Leverage static analysis and related tools. In addition to the hardening
mentioned previously, it’s a good idea to leverage static analysis tools as
well as penetration testing and fuzzing tools. These tools help find subtle
issues in advance, which is often much easier than debugging fielded
devices.

3. Use PX5 RTOS Pointer/Data Verification (PDV). The PX5 RTOS optionally
(as determined by px5.c build options) uses PDV to verify function pointers,
stack integrity, internal system objects, and allocated memory. Through
API extensions, the application is also able to utilize PDV to verify its
important function pointers and data. By using PVD, memory corruption
can be detected early, and the possibility of unwanted program execution
can be greatly reduced – including malicious remote execution.

4. Use an adequate (or larger) stack size. Stack overflow is the number one
cause of memory corruption in embedded systems. Each thread stack
must have enough memory for its worst-case function call nesting –
including all local variables in each function. If not, the stack may overflow
into the memory directly preceding the stack. This problem can be
mitigated by using hardware stack limit features or, alternatively, the
MPU/MMU to guard the area directly above the stack. The PX5 RTOS
stack checking features are also helpful in preventing stack overflow issues.

PX5 RTOS

20

5. Use the PX5 RTOS run-time stack checking. The PX5 RTOS run-time stack
checking is an easy way to detect (and correct) stack overflows.

6. Explicitly specify and check buffer sizes. In all functions where a buffer is
supplied, it is important for the caller to explicitly provide the size of the
buffer and the callee to explicitly check the size to avoid overrun. The PX5
RTOS does this internally, and the application firmware should as well.

7. Be mindful of more likely areas of memory corruption. When a thread
stack overflows, it generally corrupts the memory immediately preceding
the thread stack memory (in most architectures, thread stack grows
toward lower addresses). In contrast, buffer overflows are more likely to
corrupt memory immediately following the buffer. Knowing this, it might
be safer to avoid placing critical data before stacks or immediately
following buffers.

8. Use PDV to place markers before stacks and after data buffers to help
detect memory corruption caused by stack and buffer overflows. Please
see the px5_pthread_pdv_* APIs for more details.

9. Be careful with function pointers. Function pointers provide an easy path
to unwanted program execution – both unintentional and intentional. For
example, it’s not good practice to place function pointers inside buffers
since a buffer overflow could overwrite the function pointer. This is the
easiest way for an attacker to initiate unwanted remote execution. Of
course, the PDV feature of the PX5 RTOS can be used to verify application
function pointers before they are called, which helps mitigate this issue.

10. Test, test, and test. The PX5 RTOS was implemented in a Test Driven
Development (TDD) manner, which basically means the tests are written
before the actual code. Furthermore, by design, the PX5 RTOS code base
must achieve 100% statement and 100% branch/decision coverage testing
before each minor release. We recommend the application firmware take
a similar approach – there is never enough testing. The more vetted the
software is, the safer and more secure it is.

PX5 RTOS

21

Chapter 5: PX5 RTOS Pointer/Data
Verification

Pointer/Data Verification is a software-only technique to help detect and mitigate
both intentional and accidental memory corruption. The basic idea is that for
important information, a verification code is created and stored in memory. Before
the important information is used, the verification code is generated again and
compared with what was stored previously. If they are not the same, memory
corruption has occurred, and the PX5 RTOS immediately alerts the application by
calling the central error handling function. It’s important to note that the application
can define exactly what happens in the central error handling.

Default Verification Code

The default formula for generating the verification code can be defined by the
application. However, by default, the verification code is a combination of a run-
time identification (secret) passed to the PX5 RTOS in the px5_pthread_start API,
along with the value of the important information and the address to store the
generated code. The default formula looks something like this:

Verification Code = ((Data Value) + (Address to Store Code) + (Secret)) ^ (Secret)

For verification codes that are run-time unique, we recommend using a True
Random Number Generator (TRNG) if available in hardware. With use of a TRNG,
the verification code for each important data element has a temporal property, i.e.,
it will be unique for each execution of the application running on top of the PX5
RTOS. This makes it much harder for hackers to successfully insert malicious
information, such as function pointers for remote execution attacks. The address to
store the verification code provides a special property to the verification code. It’s
unlikely that any two images will have the same exact memory layout, which again
makes it more difficult for hackers to successfully change important information
without detection.

Note that he default verification code can be changed by overriding the
PX5 RTOS macro PX5_POINTER_DATA_VERIFY_CODE_COMPUTE to any
formula desired by the application.

Chapter

5

PX5 RTOS

22

Important Information Verified

The PX5 RTOS provides optional PDV protection over a series of important internal
information, including the following:

• All function pointers used in the PX5 RTOS

• Global data of the PX5 RTOS

• Internal system structures with the PX5 RTOS (threads, queues, etc.)

• Return addresses on internal PX5 RTOS functions

• Metadata pointers used for memory management

• API’s for application-specific use of PDV

Enabling PDV

As mentioned, the use of PDV is optional and is not-enabled by default. In addition,
it can be individually enabled for specific PX5 RTOS areas. To enable PDV, the PX5
RTOS source should be built with the following defines (depending on the exact
verification requested):

PX5_FUNCTION_POINTER_VERIFY_ENABLE When defined, all function pointers
used internally in the PX5 RTOS are
evaluated against the verification
code that was established when
they were setup. With this enabled,
it’s much harder for hackers to
insert rogue function pointers in
remote execution attacks.

PX5_OBJECT_VERIFY_ENABLE When defined, all internal PX5 RTOS
objects (including the global PX5
RTOS data) are evaluated against
the verification code that was
established when they were
created. This mechanism facilitates
early detection of memory
corruption – both intentional and
non-intentional.

PX5 RTOS

23

PX5_MEMORYPOOL_VERIFY_ENABLE When defined, all internal PX5 RTOS
memory pool linked-lists are
evaluated against the verification
code that was established when the
memory pool is created. The
verification also occurs memory
from the pool is allocated or
released. This mechanism helps
early detection of memory
corruption, most usually associated
with the application writing past the
allocated memory.

PX5_STACK_VERIFY_ENABLE When defined, the PX5 RTOS
performs stack integrity checking,
including verification of the function
call return address when possible
(when supported by the compiler).

PDV Overhead

The amount of overhead associated with using PDV depends on CPU architecture
and the compiler but is generally minimal. Assuming the default verification code
generation as described previously, the assembly code to generate the verification
code is only a couple of instructions on a typical Arm Cortex-M architecture, as
follows:

 ADDS R3, R2, R0
 EORS R3, R3, R4

This code assumes that R0 contains the important data value, R2 contains the
address to store the verification code, and R3 contains the run-time secret. It’s
reasonable to assume that each register might require a load instruction (LDR),
and there will be one store instruction (STR) to store the code. Given all of that, to
build and store the default verification code takes roughly six assembly
instructions.

To verify the code, another six assembly instructions are required, along with
another three instructions to load the previously stored code, compare it, and
branch to either the “okay” path or to the central error handling.

PX5 RTOS

24

Chapter 6: PX5 RTOS Functional Overview

This chapter provides a complete functional overview of the PX5 RTOS. The
following block diagram provides a high-level overview of the PX5 RTOS:

Each feature of the PX5 RTOS are discussed in the following paragraphs.

Chapter

6

PX5 RTOS

25

Composition

The PX5 RTOS is comprised of two main source files, namely px5.c and
px5_binding.s. As shown in the block diagram above, almost all of the PX5 RTOS
functionality is implemented in ANSI C and resides in px5.c. All development tool
and processor-specific logic is contained in assembly-language px5_binding.s file.
The binding file is intentionally kept to a minimum in order to enhance PX5 RTOS
portability. Detailed information regarding the binding layer assembly file for each
unique processor and development tool support for the PX5 RTOS can be found in
the accompanying PX5_RTOS_Binding_User_Guide.pdf document.

Namespace

All global symbols in the PX5 RTOS – both functions and global data – have names
with px5_ prepended. Hence, looking at a linker load map, the PX5 RTOS symbols
are easily identified.

Native pthreads Implementation

The PX5 RTOS is a native implementation of the POSIX pthreads standards. By
native, we mean that the pthreads API is not a layer on top of another RTOS API but
instead is implemented directly. For example, the API pthread_mutex_lock is an
actual C function implemented in px5.c, containing all of the mutex lock code
necessary for operation. There are no other layers or internal RTOS primitives that
this code relies on or is built on top of. The result is the fastest and smallest possible
implementation of pthread APIs.

pthreads API Extensions

The POSIX pthreads standard provides services to create robust multithreaded
applications, most commonly on Linux or Embedded Linux platforms. That said,
embedded development is often more demanding, requiring advanced real-time
capabilities – in terms of both performance and functionality. The PX5 RTOS
implements the core pthreads APIs in the most real-time, deterministic way
possible, satisfying the advanced real-time demands for embedded systems. As for
functionality, the PX5 RTOS offers extensions to the pthreads standards – called
pthreads+. These extensions include adding new functionality to the standard API
set, as well as completely new functionality, e.g., event flags, fast queues, and
memory management.

Internal Memory Management

The PX5 RTOS does not require dynamic memory allocation for its operation.
However, each new system object (thread, mutex, semaphore, etc.) created by the
application does require memory for its internal control structure. Some objects

PX5 RTOS

26

also have additional memory requirements, e.g., each thread requires as stack and
each message queue require memory to store messages. The PX5 RTOS object
memory requirements can be satisfied in the following ways:

1. One-time, sequential allocation for each object creation/initialization from
the memory supplied to the px5_pthread_start API. This is the easiest
approach – as well as the lowest overhead and fastest. For systems that are
not dynamically destroying and re-creating system objects, this approach is
sufficient.

2. Application explicitly provides memory for each object. Through attribute
extensions, each object in the PX5 RTOS provides the application the ability
to explicitly supply the memory required for the object’s creation. If this
approach is used throughout, no additional memory is required by the PX5
RTOS. In addition, this approach allows the application to specifically
designate where every object’s memory is located. Please see the following
APIs for more information:

 pthread_attr_setstackaddr
 px5_mq_extendattr_setcontroladdr
 px5_mq_extendattr_setqueueaddr
 px5_pthread_attr_setcontroladdr
 px5_pthread_condattr_setcontroladdr
 px5_pthread_mutexattr_setcontroladdr
 px5_pthread_ticktimerattr_setcontroladdr
 px5_semattr_setcontroladdr

3. Dynamic memory management of the memory supplied to the
px5_pthread_start API. This approach relies on the memory supplied to
px5_pthread_start. However, it is fully managed underneath via a PX5 RTOS
variable-length memory pool. This facilitates dynamic destruction and re-
creation of objects. Please see the px5_memory_manager_enable API for
more details.

4. Application override of the internal memory management. This approach
allows the application to override the internal PX5 RTOS memory
management – giving the application complete control of dynamic memory
allocation within the PX5 RTOS. Please see the px5_memory_manager_get
and px5_memory_manager_set API for more details.

PX5 RTOS

27

Run-time Stack Checking/Verification

Memory corruption via stack overflow is the leading cause for erroneous program
execution in most embedded applications. In addition to taking advantage of
hardware stack limit protections for overrun, the PX5 RTOS provides run-time stack
checking. Simply build the PX5 RTOS source with PX5_STACK_CHECK_ENABLE, and
each thread’s stack size is checked throughout PX5 RTOS execution. The application
may also utilize the px5_pthread_stack_check API to perform stack checking from
the application’s C code.

Stack integrity checking is also available. Building the PX5 RTOS source code with
PX5_STACK_VERIFY_ENABLE defined enables run-time integrity checking of each
thread’s stack. This integrity checking – via the PX5 RTOS PDV technology - includes
verification of the function caller’s return address, when accessible via the compiler.

If a stack corruption or overflow is detected, the central error handling function is
called with a fatal error. If stack checking detects a stack that is at risk of overflow,
the central error handling is called with the appropriate advisory error.

Central Error Handling

The PX5 RTOS provides central error handling, meaning that all system errors are
routed to a single, internal handler. System errors are grouped into three basic
categories as follows:

 PX5_LEVEL_3_ERROR
 PX5_LEVEL_2_ERROR
 PX5_LEVEL_1_ERROR

Level 3 errors are considered fatal errors and are generally not recoverable. Level 2
errors are serious errors that could soon result in a fatal error. Level 1 errors are
the least serious error and are often the result of an invalid API parameter. The
default processing inside of PX5 is to simply register the error information received
and return. However, the user is able to augment the error processing for each
level by overriding these symbols (typically, this would be done in the
px5_user_config.h):

 PX5_LEVEL_3_ERROR_PROCESSING
 PX5_LEVEL_2_ERROR_PROCESSING
 PX5_LEVEL_1_ERROR_PROCESSING

PX5 RTOS

28

During development, it’s also good practice to set a breakpoint on the
px5_internal_central_error_process routine.

Scheduling Policy

There are typically three scheduling policies offered in association with POSIX
pthreads, as follows:

SCHED_FIFO This is the basic priority based,
preemptive scheduling policy where
higher-priority threads preempt
lower-priority threads. Aside from
preemption, each thread runs until
it is blocked, completes, or is
terminated.

SCHED_RR This simply adds time-slicing to
SCHED_FIFO.

SCHED_OTHER This is the implementation defined
scheduling policy in pthreads, which
is how the PX5 RTOS identifies its
scheduling policy.

The PX5 RTOS employs a priority-based preemptive scheduling policy, which
matches closely with SCHED_RR. However, since the PX5 RTOS implements per-
thread time-slicing as well as various pthread extensions, the
pthread_attr_getschedparam API returns SCHED_OTHER to indicate it is
implementation defined. The PX5 RTOS does not support dynamic changing of the
scheduling policy.

Thread Priorities

The PX5 RTOS supports 32 thread priority levels, ranging from 0 through 31. Priority
level 0 is the lowest priority level (least important). Conversely, priority level 31 is
the highest (most important). Preemption occurs (thread context switch) when a
higher priority thread becomes ready during the execution of a lower priority
thread.

Thread States

Each thread in the PX5 RTOS is in one of four high-level states – EXECUTING, READY,
BLOCKED, or FINISHED. For single core processors, there is only one thread in the
EXECUTING state, which generally represents the highest-priority, ready thread.

PX5 RTOS

29

Threads that are in the READY state are waiting for their turn to enter the
EXECUTING state. Threads that are in the BLOCKED state are waiting for an PX5
RTOS API call or system event from another thread or Interrupt Service Routine (ISR)
that satisfies their previous request that caused them to enter the BLOCKED state.
Once unblocked they enter the READY state. Threads in the FINISHED state have
called pthread_exit, returned from their entry function, or werecanceled. The
following diagram shows the typical thread state transitions in the PX5 RTOS:

Note that the FINISHED state is not shown. Once in the FINISHED state, the thread
can never become ready or execute again, i.e., there are no transitions from the
FINISHED state.

System Objects

The PX5 RTOS provides support for the most popular POSIX objects, including
condition variables, message queues, mutexes, semaphores, signals, and timers.
There is no compile-time limit on the number of system objects an application may
have. The only limit is the amount of memory available in the application.

The PX5 RTOS does not create any objects itself, i.e., there are no hidden system
threads or any other mutex. The only object created by the PX5 RTOS is the initial
“main” thread, which ultimately is an application thread.

As mentioned previously, the memory required for object control blocks and
associated memory areas is under complete control of the application.

EXECUTING

BLOCKEDREADY

PX5 RTOS

30

Condition Variables

The POSIX pthreads condition variable is a communication object that has built-in
synchronization via direct association with a mutex object. Threads can block on a
condition variable (even with timeout) to wait for data or some state to be reached.
When the data or state is reached, this can be signaled or broadcasted by another
thread or threads. If a condition variable is signaled, the highest priority waiting
thread is resumed. If the condition variable is broadcast, all threads waiting on the
condition variable are resumed.

The following are the condition variable APIs supported by the PX5 RTOS:

pthread_cond_broadcast
pthread_cond_destroy
pthread_cond_init
pthread_cond_signal
pthread_cond_timedwaid
pthread_cond_wait
pthread_condattr_destroy
pthread_condattr_getcontroladdr
pthread_condattr_getcontrolsize
pthread_condattr_getname
pthread_condattr_getpshared
pthread_condattr_init
pthread_condattr_setcontroladdr
pthread_condattr_setname
pthread_condattr_setpshared

Message Queues

The POSIX message queues provide inter-thread communication. Messages passed
between threads via message queues are passed by value, meaning messages are
copied into the message queue when sending. Conversely, messages are copied
from the message queue when receiving. The size of a message sent has an upper
bound defined when the message queue was created (opened). The actual size of
the message sent can be any size less than or equal to the maximum size – including
a size of zero. When a message is received, the actual size of the message is provided
as part of the receive API.

Messages also have priorities, ranging from 0 (lowest priority) through
_SC_MQ_PRIOMAX (highest priority, default 31). Messages are placed in the queue
in priority order. Messages of the same priority are placed in the queue in FIFO
order.

PX5 RTOS

31

Threads can suspend on either trying to receive from an empty queue or trying to
send to a queue that is full. Suspension is determined by a queue attribute. If the
queue attribute O_NONBLOCK is present, no blocking is allowed on the message
queue. This attribute must be set via the mq_setattr API call, i.e., it is not the default
upon queue creation. Threads that do suspend on a message queue, do so in FIFO
order.

The following are the message queue APIs supported by the PX5 RTOS:

mq_close
mq_getattr
mq_open
mq_receive
mq_send
mq_setattr
mq_timedreceive
mq_timedsend
px5_mq_extendattr_destroy
px5_mq_extendattr_getcontroladdr
px5_mq_extendattr_getcontrolsize
px5_mq_extendattr_getqueueaddr
px5_mq_extendattr_getqueuesize
px5_mq_extendattr_init
px5_mq_extendattr_setcontroladdr
px5_mq_extendattr_setqueueaddr

Mutexes

The POSIX pthreads mutex is a thread synchronization object that is typically used
for mutual exclusion—most often to protect a shared data structure from
concurrent access by multiple threads. If a thread attempts to lock a mutex that is
already owned, the thread suspends on the mutex waiting for it be become
available. When the owning thread unlocks the mutex, the highest priority thread
waiting to lock the mutex is given the mutex and resumed. Both priority inheritance
and recursive mutexes are supported, however, neither is the default.

When using mutexes, it’s important to avoid deadlock situations (each thread
waiting for a mutex owned by the other thread). Allowing each thread to only lock
one mutex at a time will avoid deadlocks. If multiple mutexes must be locked by the
same thread, deadlock can be avoided if the mutexes are locked in the exact same
order by all threads. Finally, threads must not exist with a locked mutex. Doing so
will leave the mutex permanently locked and all threads attempting to lock the
mutex will wait forever.

PX5 RTOS

32

The following are the mutex APIs supported by the PX5 RTOS:

pthread_mutex_destroy
pthread_mutex_init
pthread_mutex_lock
pthread_mutex_trylock
pthread_mutex_unlock
pthread_mutexattr_destroy
pthread_mutexattr_getcontroladdr
pthread_mutexattr_getcontrolsize
pthread_mutexattr_getname
pthread_mutexattr_getpshared
pthread_mutexattr_init
pthread_mutexattr_setcontroladdr
pthread_mutexattr_setname
pthread_mutexattr_setpshared

Semaphores

POSIX semaphores are synchronization objects not part of the pthreads API per-se
but are commonly found with pthread implementations. A semaphore is effectively
a counter. Non-zero values indicate availability, while a zero value indicates the
semaphore is not available. Threads block when attempting to get a semaphore
with a value of zero. When the semaphore is released by another thread, the highest
priority thread waiting on the semaphore is resumed.

A semaphore can be used in a consumer-producer fashion as a way to synchronize
thread execution. Semaphores can also be used for mutual exclusion. However,
mutexes are generally a more robust object for mutual exclusion (semaphores don’t
have the concept of ownership and also don’t provide nesting or priority
inheritance).

The following are the semaphore APIs supported by the PX5 RTOS:

sem_destroy
sem_init
sem_post
sem_trywait
sem_wait
px5_sem_extend_init
px5_semattr_destroy
px5_semattr_getcontroladdr
px5_semattr_getcontrolsize

PX5 RTOS

33

px5_semattr_getname
px5_semattr_init
px5_semattr_setcontroladdr
px5_semattr_setname

Signals

POSIX signals provide a mechanism to notify a thread of a system event. The
notification can be done synchronously or asynchronously, as determined by the
receiving thread’s signal mask setting. If a thread has a signal masked, the signal
processing for that specific signal is synchronous and accomplished via the various
signal wait API calls. However, if the thread has a signal unmasked, the signal
processing for that signal is asynchronous, i.e., it happens immediately when the
signal is raised.

For asynchronous signal processing, the application must have previously registered
a signal handler for the signal via the sigaction API. This signal handler will execute
immediately in the context of the selected thread when the corresponding signal is
raised.

Each signal is represented by a single bit position of a 32-bit word. Multiple signals
can be masked or unmasked or waited for simultaneously. Raising a signal is done
via the pthread_kill API using the signal’s numeric value and the responsible thread’s
handle.

The following are the signal APIs supported by the PX5 RTOS:

pthread_kill
pthread_sigmask
sigaction
sigaddset
sigdelset
sigemptyset
sigfillset
sigismember
sigpending
sigtimedwait
sigwait
sigwaitinfo

PX5 RTOS

34

Pthread Extensions

The POSIX pthread API provides a rich set of multithreading services, which the PX5
RTOS makes available to the application. However, deeply embedded, real-time
applications often require additional services. For this reason, the PX5 RTOS
provides optional extensions to pthreads, which are collectively called pthreads+.
These extensions to pthreads are completely optional and are easily identifiable by
having the “px5_” prefix to the API name.

Fastqueues

The PX5 RTOS provides Fastqueue thread communication objects, which are not
part of the pthreads API but are quite useful in embedded real-time programming.
Each Fastqueue is capable of holding one or more fixed-sized messages (message
sizes must be evenly divisible by sizeof the u_long data type. Threads may suspend
on queue full or queue empty requests. Suspended threads are resumed in FIFO
order. ISRs are allowed to send messages via the px5_pthread_fastqueue_trysend
API.

The following are the Fastqueue APIs supported by the PX5 RTOS:

px5_pthread_lags_clear
px5_pthread_fastqueue_create
px5_pthread_fastqueue_destroy
px5_pthread_fastqueue_send
px5_pthread_fastqueue_receive
px5_pthread_fastqueue_trysend
px5_pthread_fastqueue_tryreceive
px5_pthread_fastqueueattr_getcontroladdr
px5_pthread_fastqueueattr_getcontrolsize
px5_pthread_fastqueueattr_getname
px5_pthread_fastqueueattr_getqueueaddr
px5_pthread_fastqueueattr_getqueuesize
px5_pthread_fastqueueattr_init
px5_pthread_fastqeueuattr_setcontroladdr
px5_pthread_fastqueueattr_setname
px5_pthread_fastqueueattr_setqueueaddr

PX5 RTOS

35

Event Flags

The PX5 RTOS provides thread synchronization event flags objects, which are not
part of the pthreads API but are quite useful in embedded real-time programming.
Each event flag is represented by a single bit in a 32-bit word (maximum of 32 events
per event flags group). Threads may wait for any one of the events they specify.
Alternatively, threads may wait on the reception of all the events they specific.
When a thread (or ISR) sets an event, all threads that have their event request
satisfied are resumed. Events that satisfy a suspended thread’s request are
automatically cleared.

The following are the event flags APIs supported by the PX5 RTOS:

px5_pthread_event_flags_clear
px5_pthread_event_flags_create
px5_pthread_event_flags_destroy
px5_pthread_event_flag_set
px5_pthread_event_flags_trywait
px5_pthread_event_flags_wait
px5_pthread_event_flagsattr_getcontroladdr
px5_pthread_event_flagsattr_getcontrolsize
px5_pthread_event_flagsattr_getname
px5_pthread_event_flagsattr_init
px5_pthread_event_flagsattr_setcontroladdr
px5_pthread_event_flagsattr_setname

Memory Pools

The PX5 RTOS provides dynamic, variable-lenth memory allocation via memory
pools objects, which are not part of the pthreads API but is often necessary in
embedded real-time programming. Memory is allocated on a first-fit basis, i.e., the
first memory encountered in the search that satisfies the request is used. If not
enough memory is available in the memory pool, the calling thread will suspend.
When memory becomes available, all suspended threads with a potential of a
successful allocation are resumed.

The following are the memory pool APIs supported by the PX5 RTOS:

px5_pthread_memorypool_allocate
px5_pthread_memorypool_create
px5_pthread_memorypool_destroy
px5_pthread_memorypool_free
px5_pthread_memorypool_tryallocate
px5_pthread_memorypoolattr_destroy

PX5 RTOS

36

px5_pthread_memorypoolattr_getcontroladdr
px5_pthread_memorypoolattr_getcontrolsize
px5_pthread_memorypoolattr_getname
px5_pthread_memorypoolattr_init
px5_pthread_memorypoolattr_setcontroladdr
px5_pthread_memorypoolattr_setname

Ticktimer Services

The PX5 RTOS provides ticktimer services (usually, the tick interval is 10ms, but this
is completely under application control). Ticktimer services include retrieval of the
current number of timer ticks, thread sleeping for a specified number of timer ticks,
and tick-based application one-shot as well as periodic timers.

The following are the ticktimer APIs supported by the PX5 RTOS:

px5_pthread_tick_sleep
px5_pthread_ticks_get
px5_pthread_ticktimer_create
px5_pthread_ticktimer_destroy
px5_pthread_ticktimer_start
px5_pthread_ticktimer_stop
px5_pthread_ticktimer_update
px5_pthread_ticktimerattr_destroy
px5_pthread_ticktimerattr_getcontroladdr
px5_pthread_ticktimerattr_getcontrolsize
px5_pthread_ticktimerattr_init
px5_ticktimerattr_setcontroladdr
px5_pthread_ticktimerattr_setcontrolsize
px5_pthread_ticktimerattr_setname

PX5 RTOS

37

Chapter 7: PX5 RTOS API definitions

This chapter provides the API description of the PX5 RTOS. Each API definition
includes the API's C prototype, a description including the various real-time
scenarios that can occur as a result of the API, where the API can be called, a
definition of each parameter, return value(s), and a small C code example.

All APIs starting with "px5_" are PX5 RTOS pthreads+ extensions. These
APIs are PX5-specific and are not generally available on non-PX5
platforms.

Chapter

7

PX5 RTOS

38

clock_getres

C Prototype:

#include <pthread.h>

int clock_getres(clockid_t clock_id, struct timespec *resolution);

Description:

This service returns the current time resolution in resolution, which is
effectively the underlying ticktimer periodic interrupt frequency.

API Parameters:

clock_id This parameter must be CLOCK_REALTIME, since
it is the only supported clock.

resolution Destination for the clock resolution.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of clock resolution.
PX5_ERROR (-1) Error attempting to get clock resolution. Please

use errno to retrieve the exact error:

 EINVAL Invalid clock ID.
 EFAULT Invalid resolution pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

39

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

clock_gettime, clock_settime, time

Small Example:

#include <pthread.h>

Int status;

struct timespec my_resolution;

 /* Pickup the current clock resolution. */

 status = clock_getres(CLOCK_REALTIME, &my_resolution);

 /* If status contains PX5_SUCCESS (0), the clock resolution is

 in “my_resolution”. */

PX5 RTOS

40

clock_gettime

C Prototype:

#include <pthread.h>

int clock_gettime(clockid_t clock_id, struct timespec *current_time);

Description:

This service returns the current time in the destination specified by
current_time.

API Parameters:

clock_id This parameter must be CLOCK_REALTIME, since
it is the only supported clock.

current_time Destination for the current time.

Return Codes:

PX5_SUCCESS (0) Successful get time.
PX5_ERROR (-1) Error attempting to get current time. Please use

errno to retrieve the exact error:

 EINVAL Invalid clock ID.
 EFAULT Invalid current time pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

41

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

clock_getres, clock_settime, time

Small Example:

#include <pthread.h>

Int status;

struct timespec my_current_time;

 /* Pickup the current time. */

 status = clock_gettime(CLOCK_REALTIME, &my_current_time);

 /* If status contains PX5_SUCCESS (0), the current time is

 in “my_current_time”. */

PX5 RTOS

42

clock_settime

C Prototype:

#include <pthread.h>

int clock_settime(clockid_t clock_id, struct timespec *new_time);

Description:

This service sets the current time to the value specified by new_time.

API Parameters:

clock_id This parameter must be CLOCK_REALTIME, since
it is the only supported clock.

new_time User supplied time value the system is set to.

Return Codes:

PX5_SUCCESS (0) Successful set time.
PX5_ERROR (-1) Error attempting to set time. Please use errno to

retrieve the exact error:

 EINVAL Invalid clock ID or invalid time
specification.

 EFAULT Invalid new time pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

43

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

clock_getres, clock_gettime, time

Small Example:

#include <pthread.h>

Int status;

struct timespec my_new_time;

 /* Get the current time. */

 clock_gettime(CLOCK_REALTIME, &my_new_time);

 /* Move one second forward. */

 my_new_time.tv_sec++;

 /* Set the new time. */

 status = clock_settime(CLOCK_REALTIME, &my_new_time);

 /* If status contains PX5_SUCCESS (0), the new time is one second

 later. */

PX5 RTOS

44

mq_close

C Prototype:

#include <mqueue.h>

int mq_close(mqd_t message_queue);

Description:

This service closes and destroys the specified message queue. If there are any
threads suspended on the message queue, an error is returned.

API Parameters:

message_queue Specifies the queue to close/destroy.

Return Codes:

PX5_SUCCESS (0) Successful message queue close.
PX5_ERROR (-1) Error attempting to close the message queue.

Please use errno to retrieve the exact error:

 EBADF Invalid memory queue handle.
 EBUSY Specified message queue has

threads suspended on it.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

45

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_open, mq_receive, mq_send

Small Example:

#include <mqueue.h>

int status;

mqd_t my_queue_handle;

 /* Close the previously opened queue “my_queue_handle”. */

 status = mq_close(my_queue_handle);

 /* If status contains PX5_SUCCESS (0), the message queue

 “my_queue_handle” is closed. */

PX5 RTOS

46

mq_getattr

C Prototype:

#include <mqueue.h>

int mq_getattr(mqd_t message_queue, struct mq_attr* queue_attributes);

Description:

This service retrieves the current attributes of the specified message queue.

API Parameters:

message_queue Specifies the queue to retrieve attributes from.
queue_attributes Specifies the destination for the queue attributes

information.

Return Codes:

PX5_SUCCESS (0) Successful message queue attributes retrieval.
PX5_ERROR (-1) Error attempting to get the queue attributes.

Please use errno to retrieve the exact error:

 EBADF Invalid memory queue handle or
invalid attributes destination
pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

47

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_open, mq_setattr

Small Example:

#include <mqueue.h>

int status;

struct mqd_t my_queue_attributes;

mqd_t my_queue_handle;

 /* Get the attributes of the previously opened queue

 “my_queue_handle” and return them in “my_queue_attributes”. */

 status = mq_getattr(my_queue_handle, &my_queue_attributes);

 /* If status contains PX5_SUCCESS (0), “my_queue_attributes”

 contains the attributes of message queue “my_queue_handle”. */

PX5 RTOS

48

mq_open

C Prototype:

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

mqd_t mq_open(const char * queue_name, int operation, mode_t mode,

 mq_attr * queue_attributes);

Description:

This service opens (creates) the message queue specified and returns the
message queue handle, if successful.

API Parameters:

queue_name Name of the queue to open/create.
operation Specifies how the queue will operate. The

supported options are:

 O_CREAT
 O_RDWR
 O_NONBLOCK

Both O_CREAT and O_RDWR should be specified.
The O_NONBLOCK option that disables threads
from suspending on the queue is optional.

mode Not currently used.
queue_attributes Attributes that specify the dimensions of the
 message queue, as defined by these structure
 members:

 mq_maxmsg
 mq_msgsize

 Where mq_maxmsg defines the total number
 of messages the queue can hold. The
 maximum size of each message (in bytes) is
 defined by mq_msgsize. Note the size and

PX5 RTOS

49

 priority of each message must be stored
 along with the message content. In addition,
 there is one pointer type required for each
 message. On most architectures, this
 amounts to 12 bytes of additional-per
 message overhead.

Return Codes:

queue handle Positive value represents the successfully
opened (created) queue handle.

PX5_ERROR (-1) Error attempting to open/create the queue.
Please use errno to retrieve the exact error:

 ENOSPC Not enough memory to create the
specified queue.

 EINVAL Invalid operation or invalid
attributes pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_close, mq_getattr, mq_setattr, px5_mq_extend_open

PX5 RTOS

50

Small Example:

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

int status;

struct mq_attr my_queue_attributes;

mqd_t my_queue_handle;

 /* Setup the attributes for 100 total messages, where each

 message is a maximum of 16 bytes. */

 my_queue_attributes.mq_maxmsg = 100;

 my_queue_attributes.mq_msgsize = 16;

 /* Open (create) the queue “my_queue”. */

 my_queue_handle = mq_open(“my queue”, (O_CREAT | O_RDWR), 0,

 &my_queue_attributes);

 /* If “my_queue_handle” is positive, the queue was successfully

 created. */

PX5 RTOS

51

mq_receive

C Prototype:

#include <mqueue.h>

int mq_receive(mqd_t message_queue, char * message,

 size_t message_size, unsigned int * message_priority);

Description:

This service receives the highest priority message from the specified message
queue. If the queue is empty and the O_NONBLOCK attribute is not set, the
calling thread will suspend waiting for a message to arrive. If multiple threads
are waiting on an empty queue, the first thread waiting is given the message.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

message_queue Message queue to get message from.

message Pointer to the destination for the message.

message_size Maximum size for the message. This must be
 equal to or greater than the maximum message
 size of the queue.
message_priority Priority of the message received.

Return Codes:

message size A non-negative value represents the actual size
of the successfully received message (messages
of zero size are allowed).

PX5_ERROR (-1) Error attempting to receive a message from the
queue. Please use errno to retrieve the exact
error:

 EBADF Invalid message queue handle or
invalid message destination
pointer.

 EMSGSIZE Invalid message size.

PX5 RTOS

52

 EAGAIN Message queue is empty and
O_NONBLOCK was specified to
disable thread suspension to wait
for a message.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service
if a message was present in the message queue.

SUSPENSION. The calling thread is suspended until a message arrives
in the queue.

PREEMPTION. If a higher-priority thread was waiting to place a
message on the queue, it is resumed, and preemption will occur.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_open, mq_send, mq_timedreceive

PX5 RTOS

53

Small Example:

#include <mqueue.h>

ssize_t received_size;

char my_message[16];

unsigned int my_priority;

mqd_t my_queue_handle;

 /* Receive message from “my_queue”. */

 received_size = mq_receive(my_queue_handle, &my_message[0],

 sizeof(my_message), &my_priority);

 /* If “received_size” is positive, the message was successfully

 received. */

PX5 RTOS

54

mq_send

C Prototype:

#include <mqueue.h>

int mq_send(mqd_t message_queue, char * message,

 size_t message_size, unsigned int message_priority);

Description:

This service send the message to the specified message queue. If the queue is
full and the O_NONBLOCK attribute is not set, the calling thread will suspend
waiting for room in the queue.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

message_queue Message queue to send message to.
message Pointer to the source of the message.

message_size Size of the message. This must be

 equal to or less than the maximum message
 size of the queue. Messages of zero size are
 allowed.
message_priority Priority of the message to send.

Return Codes:

PX5_SUCCESS (0) Successful send to the message queue.
PX5_ERROR (-1) Error attempting to send a message to the

queue. Please use errno to retrieve the exact
error:

 EBADF Invalid message queue handle or
invalid message pointer.

 EMSGSIZE Invalid message size.
 EAGAIN Message queue is full and

O_NONBLOCK was specified to

PX5 RTOS

55

disable thread suspension to wait
for room in the queue.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service
if there is room in the message queue.

SUSPENSION. The calling thread is suspended if the specified queue
is full.

PREEMPTION. If a higher-priority thread was waiting for a message
on an empty queue, it is resumed, and preemption will occur.

Callable From:

This service is only callable from the thread context and from interrupt handlers
(ISRs).

The user must not call this API from an interrupt handler if
suspension is possible. An easy way to ensure the queue attribute
O_NONBLOCK is in force. Otherwise, unpredictable behavior is
possible.

See Also:

mq_open, mq_receive, mq_timedreceive, mq_timedsend

PX5 RTOS

56

Small Example:

#include <mqueue.h>

int status;

char my_message[16];

mqd_t my_queue_handle;

 /* Build the message. */

 my_message[0] = “m”;

 my_message[1] = “y”;

 my_message[2] = “ “;

 my_message[3] = “m”;

 my_message[4} = “e”;

 my_message[5] = “s”;

 my_message[6] = “s”;

 my_message[7] = “a“;

 my_message[8] = “g”;

 my_message[9} = “e”;

 /* Send a priority 0 message to “my_queue”. */

 status = mq_send(my_queue_handle, &my_message[0], 10, 0);

 /* If status is PX5_SUCCESS (0), the message was successfully

 sent. */

PX5 RTOS

57

mq_setattr

C Prototype:

#include <mqueue.h>

int mq_setattr(mqd_t message_queue, struct mq_attr * new_attributes,

 struct mq_attr * previous_attributes);

Description:

This service sets the attributes of the specified message queue. If the
previous_attributes pointer is non-NULL, the attributes prior to this service are
returned.

API Parameters:

message_queue Specifies the queue to retrieve attributes from.
new_attributes Specifies the new queue attributes to set, either

O_NONBLOCK to disable thread suspension on
the queue or zero to enable thread suspension.

previous_attributes If non-NULL, specifies the destination for the

prior queue attributes information.

Return Codes:

PX5_SUCCESS (0) Successful message queue attributes set.
PX5_ERROR (-1) Error attempting to set the queue attributes.

Please use errno to retrieve the exact error:

 EBADF Invalid memory queue handle or
invalid attributes destination
pointer.

 EINVAL Invalid attribute specification –
must be either O_NONBLOCK or
zero.

PX5 RTOS

58

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_getattr, mq_open

Small Example:

#include <mqueue.h>

int status;

struct mq_attr my_new_attributes;

struct mq_attr my_previous_attributes;

mqd_t my_queue_handle;

 /* Turn off thread suspension on “my_queue_handle” and return the

 previous attributes in “my_previous_attributes”. */

 my_new_attributes.mq_flags = O_NONBLOCK;

 status = mq_setattr(my_queue_handle, &my_new_attributes,

 &my_previous_attributes);

 /* If status contains PX5_SUCCESS (0), the queue won’t allow thread

 suspension and “my_previous_attributes” contains the attributes

 of message queue “my_queue_handle” before this call. */

PX5 RTOS

59

mq_timedreceive

C Prototype:

#include <pthread.h>

#include <mqueue.h>

int mq_timedreceive(mqd_t message_queue, char * message,

 size_t message_size, unsigned int * message_priority,

 const struct timespec absolute_timeout);

Description:

This service receives the highest priority message from the specified message
queue. If the queue is empty and the O_NONBLOCK attribute is not set, the
calling thread will suspend waiting for a message to arrive. If the timeout is
exceeded before a message arrives, the thread is resumed with an error.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

message_queue Message queue to get message from.
message Pointer to the destination for the message.
message_size Maximum size for the message. This must be

 equal to or greater than the maximum message
 size of the queue.
message_priority Priority of the message received.

absolute_timeout Absolute time to wait for the message to arrive.

Return Codes:

message size A non-negative value represents the actual size
of the successfully received message (messages
of zero size are allowed).

PX5_ERROR (-1) Error attempting to receive a message from the
queue. Please use errno to retrieve the exact
error:

PX5 RTOS

60

 EBADF Invalid message queue handle or
invalid message destination
pointer.

 EMSGSIZE Invalid message size.
 EAGAIN Message queue is empty and

O_NONBLOCK was specified to
disable thread suspension to wait
for a message.

 ETIMEDOUT Timeout on thread suspension
waiting for a message.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service
if a message was present in the message queue.

SUSPENSION. The calling thread is suspended until a message arrives
in the queue.

PREEMPTION. If a higher-priority thread was waiting to place a
message on the queue, it is resumed, and preemption will occur.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_open, mq_send, mq_receive, mq_timedreceive

PX5 RTOS

61

Small Example:

#include <mqueue.h>

ssize_t received_size;

char my_message[16];

unsigned int my_priority;

mqd_t my_queue_handle;

struct timespec my_absolute_timeout;

 /* Setup a timeout for one second in the future. */

 clock_gettime(CLOCK_REALTIME, &my_absolute_time);

 my_absolute_time.tv_sec += 1;

 /* Receive message from “my_queue” but only wait for 1 second. */

 received_size = mq_timedreceive(my_queue_handle, &my_message[0],

 sizeof(my_message), &my_priority,

 &my_absolute_timeout);

 /* If “received_size” is positive, the message was successfully

 received. */

PX5 RTOS

62

mq_timedsend

C Prototype:

#include <mqueue.h>

int mq_timedsend(mqd_t message_queue, char * message,

 size_t message_size, unsigned int message_priority,

 const struct timespec absolute_timeout);

Description:

This service send the message to the specified message queue. If the queue is
full and the O_NONBLOCK attribute is not set, the calling thread will suspend
waiting for room in the queue. If the timeout is exceeded before room for the
message is available in the queue, the thread is resumed with an error.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

message_queue Message queue to send message to.
message Pointer to the source of the message.

message_size Size of the message. This must be
 equal to or less than the maximum message
 size of the queue. Messages with zero size are
 allowed.
message_priority Priority of the message to send.

absolute_timeout Absolute time to wait for room for the message
 in the queue.

Return Codes:

PX5_SUCCESS (0) Successful send to the message queue.
PX5_ERROR (-1) Error attempting to send a message to the

queue. Please use errno to retrieve the exact
error:

PX5 RTOS

63

 EBADF Invalid message queue handle or
invalid message pointer.

 EMSGSIZE Invalid message size.
 EAGAIN Message queue is full and

O_NONBLOCK was specified to
disable thread suspension to wait
for room in the queue.

 ETIMEDOUT Timeout on thread suspension
waiting for room for the message
in the queue.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service
if there is room in the message queue.

SUSPENSION. The calling thread is suspended if the specified queue
is full.

PREEMPTION. If a higher-priority thread was waiting for a message
on an empty queue, it is resumed, and preemption will occur.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

mq_open, mq_receive, mq_send, mq_timedreceive

PX5 RTOS

64

Small Example:

#include <mqueue.h>

ssize_t received_size;

char my_message[16];

unsigned int my_priority;

mqd_t my_queue_handle;

struct timespec my_absolute_timeout;

 /* Setup a timeout for one second in the future. */

 clock_gettime(CLOCK_REALTIME, &my_absolute_time);

 my_absolute_time.tv_sec += 1;

 /* Send message to “my_queue” but only wait for 1 second. */

 status = mq_timedsend(my_queue_handle, &my_message[0],

 sizeof(my_message), my_priority,

 &my_absolute_timeout);

 /* If “status” is PX5_SUCCESS, the message was successfully

 sent. */

PX5 RTOS

65

nanosleep

C Prototype:

#include <pthread.h>

int nanosleep(struct timespec *request_time,

 struct timespec *remainng_time);

Description:

This service causes the calling thread to suspend for the amount of time
specified in request_time. If an unmasked signal is sent to the thread while
sleeping, the thread is resumed, and the amount of remaining time is returned
in remaining_time.

Nanosleep requests are rounded up to the next time that is evenly
divisible by the timer resolution.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

request_time The amount of time to sleep.
remaining_time If non-NULL, the destination for the amount of

remaining time to sleep if nanosleep was
interrupted by a signal.

Return Codes:

PX5_SUCCESS (0) Successful sleep.
PX5_ERROR (-1) Error attempting to sleep. Please use errno to

retrieve the exact error:

 EINVAL Invalid request pointer or invalid
request time.

PX5 RTOS

66

 EINTR Nanosleep was interrupted by a
signal. The time left to sleep is
returned in remaining_time.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

SUSPENSION. The calling thread is suspended until the time specified
has lapsed or until another thread sends a signal to this thread.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_tick_sleep, sleep, usleep

Small Example:

#include <pthread.h>

int status;

struct timespec my_sleep_time;

struct timespec my_remaining_time;

 /* Sleep for 1 second. */

 my_sleep_time.tv_sec = 1;

 my_sleep_time.tv_nsec = 0;

 status = nanosleep(&my_sleep_time, &my_remaining_time);

 /* If status contains PX5_SUCCESS (0), the calling thread slept for

 1 second. */

PX5 RTOS

67

PX5 RTOS

68

pthread_attr_destroy

C Prototype:

#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attributes);

Description:

This service destroys a previously initialized thread creation attributes
structure. Once destroyed, the attributes structure can no longer be used.

The destruction of thread attributes doesn’t have any effect on
threads previously created with the attributes. The only effect is
that this attributes structure cannot be used in the creation of any
additional threads.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

Return Codes:

PX5_SUCCESS (0) Successful attributes structure destruction.
EINVAL Attributes structure pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

69

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

Int status;

pthread_attr_t my_thread_attributes;

 /* Destroy the previously initialized attributes. */

 status = pthread_attr_destroy(&my_thread_attributes);

 /* If status contains PX5_SUCCESS, the attributes

 have been destroyed. */

PX5 RTOS

70

pthread_attr_getdetachstate

C Prototype:

#include <pthread.h>

int pthread_attr_getdetachstate(pthread_attr_t *attributes,

 int * detach_state);

Description:

This service returns the detach state stored in the thread attributes structure.
Valid detach states are PTHREAD_CREATE_JOINABLE (default) and
PTHREAD_CREATE_DETACHED.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

detach_state Pointer to the destination of where to return the
detach state setting in this attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the attributes detach
state.

EINVAL Attributes structure pointer or detach state
destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

71

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int detach_state;

int status;

 /* Get the detach state in the previously initialized

 attributes. */

 status = pthread_attr_getdetachstate(&my_thread_attributes,

 &detach_state);

 /* If status contains PX5_SUCCESS, the detach state value in this

 attribute structure is contained in “detach_state”. */

PX5 RTOS

72

pthread_attr_getstackaddr

C Prototype:

#include <pthread.h>

int pthread_attr_getstackaddr(pthread_attr_t *attributes,

 void ** stack_address);

Description:

This service returns the stack address stored in the thread attributes structure.
By default, this value is NULL unless specified by the application via a call to
pthread_attr_setstackaddr.

API Parameters:

attributes Pointer to a previously initialized attributes

structure.
stack_address Pointer to the destination of where to return the

stack address of this attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the stack address.
EINVAL Attributes structure pointer or stack address

destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

73

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

void * stack_address;

int status;

 /* Get the stack address in the previously initialized

 attributes. */

 status = pthread_attr_getstackaddr(&my_thread_attributes,

 &stack_address);

 /* If status contains PX5_SUCCESS, the stack address value in this

 attribute structure is contained in “stack_address”. */

PX5 RTOS

74

pthread_attr_getstacksize

C Prototype:

#include <pthread.h>

int pthread_attr_getstacksize(pthread_attr_t *attributes,

 size_t * stack_size);

Description:

This service returns the current stack size stored in the thread attributes
structure. By default, this value is PX5_DEFAULT_STACK_SIZE unless specified
by the application via a call to pthread_attr_setstacksize.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

stack_size Pointer to the destination of where to return the
stack size of this attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the stack size.
EINVAL Attributes structure pointer or stack size

destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

75

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

size_t stack_size;

int status;

 /* Get the stack size in the previously initialized

 attributes. */

 status = pthread_attr_getstacksize(&my_thread_attributes,

 &stack_size);

 /* If status contains PX5_SUCCESS, the stack size value in this

 attribute structure is contained in “stack_size”. */

PX5 RTOS

76

pthread_attr_init

C Prototype:

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attributes);

Description:

This service initializes the attributes structure with default thread creation
values. These defaults are as follows:

 Attribute Default Setting

 Detach State Joinable – PTHREAD_CREATE_JOINABLE
 Stack Address NULL – Allocate dynamically
 Stack Size PX5_DEFAULT_STACK_SIZE
 Priority PX5_DEFAULT_PRIORITY
 Thread Control Address NULL – Allocate dynamically
 Thread Control Size Size of internal thread control structure
 Time Slice No time-slice (0)

Once attributes are initialized via this service, the default settings above can
be overridden by pthread_attr_set* API calls.

Note that the attributes are only relevant when supplied to the
pthread_create API. After the thread is created, the attributes
can be changed for the next thread without any effect on
previously created threads.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the stack size.
EINVAL Attributes structure pointer is invalid.

PX5 RTOS

77

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Initialize the thread creation attributes. */

 status = pthread_attr_init(&my_thread_attributes);

 /* If status contains PX5_SUCCESS, the “my_thread_attributes”

 structure has been initialized with default values. */

PX5 RTOS

78

pthread_attr_setdetachstate

C Prototype:

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attributes,

 int new_detach_state);

Description:

This service sets the detach state specified by new_detach_state in the thread
attributes structure. Valid detach states are PTHREAD_CREATE_JOINABLE and
PTHREAD_CREATE_DETACHED.

Note that threads created with PTHREAD_CREATE_DETACHED
cannot be joined or canceled. When they exit, all of their
resources are released.

API Parameters:

attributes Pointer to a previously initialized attributes

structure.
detach_state The new detach state setting for this attributes

structure.

Return Codes:

PX5_SUCCESS (0) Successful detach state set.
EINVAL Attributes structure pointer or detach state

specification.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

79

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the detach state in the previously initialized

 attributes such that threads are created as detached. */

 status = pthread_attr_setdetachstate(&my_thread_attributes,

 PTHREAD_CREATE_DETACHED);

 /* If status contains PX5_SUCCESS, the detach state in this

 attributes structure is set to PTHREAD_CREATE_DETACHED. */

PX5 RTOS

80

pthread_attr_setstackaddr

C Prototype:

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *attributes,

 void * stack_address);

Description:

This service sets the stack address to the value specified by stack_address. The
stack address must be at least PTHREAD_STACK_MIN number of bytes.

Note that each thread created must have its own unique stack
memory. Hence, the stack address supplied here is only valid for one
pthread_create call.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

stack_address Stack address to use for the next thread
creation.

Return Codes:

PX5_SUCCESS (0) Successful setting of the stack address.
EINVAL Attributes structure pointer or stack address

pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

81

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the stack address to 0x30000 in the previously initialized

 attributes. */

 status = pthread_attr_setstackaddr(&my_thread_attributes,

 (void *) 0x30000);

 /* If status contains PX5_SUCCESS, the stack address in this

 attributes structure is set to 0x30000. */

PX5 RTOS

82

pthread_attr_setstacksize

C Prototype:

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attributes,

 size_t stack_size);

Description:

This service sets the specified stack size in the thread attributes structure. The
stack address must be at least PTHREAD_STACK_MIN number of bytes.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

stack_size Stack size to set in the attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful setting of the stack size.
EINVAL Attributes structure pointer or stack size is

invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

83

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the stack size in the previously initialized

 attributes. */

 status = pthread_attr_setstacksize(&my_thread_attributes,

 1024);

 /* If status contains PX5_SUCCESS, the stack size value of 1024

 is placed in this attributes structure. */

PX5 RTOS

84

pthread_cancel

C Prototype:

#include <pthread.h>

int pthread_cancel(pthread_t thread_handle);

Description:

This service cancels the specified thread. If the specified thread has
cancelation disabled or deferred, this service simply marks the thread for
cancellation for at a later point determined by the thread itself. Otherwise, if
the specified thread has asynchronous cancellation enabled, it is immediately
canceled (terminated) by this service.

By default, threads are created with deferred cancellation
enabled. This can be changed dynamically via the
pthread_setcancelstate and pthread_setcanceltype APIs.

API Parameters:

thread_handle Handle of thread to cancel.

Return Codes:

PX5_SUCCESS (0) Successful thread cancellation.
ESRCH Specified thread handle is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. No preemption takes place as a result of this
service.

PX5 RTOS

85

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cleanup_pop, pthread_cleanup_push, pthread_create,
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel

Small Example:

#include <pthread.h>

pthread_t my_cancel_thread;

int status;

 /* Cancel “my_cancel_thread”. */

 status = pthread_cancel(my_cancel_thread);

 /* If “status” is PX5_SUCCESS (0), “my_cancel_thread” was

 canceled. */

PX5 RTOS

86

pthread_cleanup_pop

C Prototype:

#include <pthread.h>

void pthread_cleanup_pop(int execute);

Description:

This service pops the most recently pushed cleanup handler from the thread’s
cleanup handler stack. If the specified execute parameter is non-zero and the
cleanup handler function pointer is non-NULL, the cleanup handler is executed
before returning to the caller.

API Parameters:

execute If non-zero and cleanup handler function pointer
is non-NULL, the cleanup handler is executed.

Return Codes:

None

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. No preemption takes place as a result of this
service.

Callable From:

PX5 RTOS

87

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cancel, pthread_cleanup_push, pthread_create,
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel

Small Example:

#include <pthread.h>

 /* Pop and execute the most recently pushed cleanup

 handler for the calling thread. */

 pthread_cleanup_pop(1);

 /* At this point the cleanup handler was popped and executed. */

PX5 RTOS

88

pthread_cleanup_push

C Prototype:

#include <pthread.h>

void pthread_cleanup_push(void (*cleanup_handler)(void *),

 void *argument);

Description:

This service pushes the specified cleanup_handler on the calling thread’s
cleanup handler stack.

Note the number of cleanup handlers a thread can push is
determined by the PX5_MAXIMUM_CLEANUP_HANDLERS
define that by default is 3. This can be changed via user
configuration. If the limit is reached, the push request is silently
discarded.

API Parameters:

cleanup_handler Cleanup handler function pointer to push.

argument Argument pointer to supply to the cleanup

handler if it is called later.

Return Codes:

None

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

PX5 RTOS

89

NO PREEMPTION. No preemption takes place as a result of this
service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cancel, pthread_cleanup_pop, pthread_create,
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel

Small Example:

#include <pthread.h>

 void my_cleanup_handler(void *agument)

 {

 /* Cleanup handler processing goes here! */

 }

 /* Push “my_cleanup_handler” to the thread’s cleanup handler

 stack. */

 pthread_cleanup_push(my_cleanup_handler, NULL);

 /* At this point, the cleanup handler was pushed. */

PX5 RTOS

90

pthread_cond_broadcast

C Prototype:

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t * condition_var_handle);

Description:

This service resumes all threads currently waiting on this condition variable.

Note that the calling thread must own the mutex associated
with this condition variable prior to making this call.
Unpredictable behavior can result if the associated mutex is not
owned by the caller of this service.

API Parameters:

condition_var_handle Handle of the condition variable to broadcast

to.

Return Codes:

PX5_SUCCESS (0) Successful condition variable broadcast.
EINVAL Invalid condition variable handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for the
condition variable, no preemption takes place.

PREEMPTION. If a higher-priority thread was waiting on the
condition variable, when it is resumed, preemption will occur.

PX5 RTOS

91

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_init, pthread_cond_signal, pthread_cond_wait

Small Example:

#include <pthread.h>

/* Condition variable handle. */

pthread_cond_t my_condition_var_handle;

int status;

 /* Broadcast to the condition variable

 “my_condition_var_handle”. */

 status = pthread_cond_broadcast(&my_condition_var_handle);

 /* If status is PX5_SUCCESS, the broadcast has resumed all waiting

 threads on this condition variable. */

PX5 RTOS

92

pthread_cond_destroy

C Prototype:

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t * condition_var_handle);

Description:

This service destroys the previously created condition variable specified by
condition_var_handle. If the condition variable is still in use by another thread,
an error is returned.

API Parameters:

condition_var_handle Handle of the condition variable to destroy.

Return Codes:

PX5_SUCCESS (0) Successful condition variable destroy.
EINVAL Invalid condition variable handle.
EBUSY Another thread is currently using the condition

variable.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

93

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_init

Small Example:

#include <pthread.h>

/* Condition variable handle. */

pthread_cond_t my_condition_var_handle;

int status;

 /* Destroy the condition variable referenced by

 “my_condition_var_handle”. */

 status = pthread_cond_destroy(&my_condition_var_handle);

 /* If status is PX5_SUCCESS, the condition variable was

 destroyed. */

PX5 RTOS

94

pthread_cond_init

C Prototype:

#include <pthread.h>

int pthread_cond_init(pthread_cond_t * condition_var_handle,

 pthread_condattr_t * condition_var_attributes);

Description:

This service initializes (creates) a condition variable with the optional condition
variable attributes. If successful, the condition variable handle is setup for
further use by the application.

API Parameters:

condition_var_handle Handle of the condition variable to
initialize.

condition_var_attributes Optional condition variable attributes.
This value is NULL if no condition variable
attributes are specified.

Return Codes:

PX5_SUCCESS (0) Successful condition variable initialization.
EINVAL Invalid condition variable handle pointer or

condition variable attributes.
EBUSY Condition variable is already created.
ENOMEM Insufficient memory to create condition variable.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

95

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_condattr_*,pthread_cond_destroy

Small Example:

#include <pthread.h>

/* Condition variable handle. */

pthread_cond_t my_condition_var_handle;

int status;

 /* Create the condition variable and setup

 “my_condition_var_handle”. */

 status = pthread_cond_init(&my_condition_var_handle, NULL);

 /* If status is PX5_SUCCESS, the condition variable was created and

 the condition variable handle is ready to use. */

PX5 RTOS

96

pthread_cond_signal

C Prototype:

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t * condition_var_handle);

Description:

This service resumes the highest priority thread currently waiting on this
condition variable.

Note that the calling thread must own the mutex associated
with this condition variable prior to making this call.
Unpredictable behavior can result if the associated mutex is not
owned by the caller of this service.

API Parameters:

condition_var_handle Handle of the condition variable to signal.

Return Codes:

PX5_SUCCESS (0) Successful condition variable signal.
EINVAL Invalid condition variable handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for the
condition variable, no preemption takes place.

PREEMPTION. If a higher-priority thread was waiting on the
condition variable, when it is resumed, preemption will occur.

PX5 RTOS

97

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_broadcast, pthread_cond_wait

Small Example:

#include <pthread.h>

/* Condition variable handle. */

pthread_cond_t my_condition_var_handle;

int status;

 /* Signal the condition variable

 “my_condition_var_handle”. */

 status = pthread_cond_signal(&my_condition_var_handle);

 /* If status is PX5_SUCCESS, the highest priority waiting thread on

 this condition variable has been resumed. */

PX5 RTOS

98

pthread_cond_timedwait

C Prototype:

#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t * condition_var_handle,

 pthread_mutex_t * mutex_handle,

 const struct timespec *absolute_time);

Description:

This services suspends on the condition variable specified by the
condition_var_handle parameter. Before this service is called, the thread must
have obtained the mutex specified by mutex_handle. Internally, PX5 releases
the mutex atomically with the thread suspension. Once the calling thread is
resumed via a signal or broadcast to the condition variable, the mutex is
reobtained before this service returns to the caller.

This service waits until the absolute time specified by the absolute_time
parameter.

Upon return, the calling thread will own the specified mutex –
regardless of completion status. The one exception is the case
where the mutex was not owned prior to calling this service.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

condition_var_handle Handle of the condition variable to
suspend on.

mutex_handle Handle of the mutex associated with this
condition variable.

absolute_time Absolute time to wait for. If the thread is
still suspended on this condition variable
when this time is reached, the service will
timeout, and the thread will be resumed.

PX5 RTOS

99

Return Codes:

PX5_SUCCESS (0) Successful condition variable wait with timeout.
EINVAL Invalid condition variable handle, mutex handle

pointer, or absolute time. In addition, if the
specified mutex is not owned or if a different
mutex is associated with this condition variable,
this error is returned.

ETIMEDOUT Maximum wait time was reached, and this
service timed out.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

SUSPENSION. The calling thread is suspended until another thread
signals or broadcasts to the condition variable. The calling thread
times out and returns with an error if absolute time is reached.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_signal, pthread_cond_wait

Small Example:

#include <pthread.h>

/* Condition variable and mutex handles. */

pthread_cond_t my_condition_var_handle;

pthread_mutex_t my_mutex_handle;

timespec max_time_to_wait;

int status;

 /* Get current time. */

 clock_gettime(CLOCK_REALTIME, &max_time_to_wait);

PX5 RTOS

100

 /* Only wait for 2 seconds on the condition variable. */

 max_time_to_wait.tv_sec += 2;

 /* Wait on this condition variable for maximum of 2 seconds. */

 status = pthread_cond_timedwait(&my_condition_var_handle,

 &my_mutex_handle, &max_time_to_wait);

 /* If status is PX5_SUCCESS, the condition variable was

 signed/broadcasted, and the mutex is again owned by the

 calling thread. */

PX5 RTOS

101

pthread_cond_wait

C Prototype:

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t * condition_var_handle,

 pthread_mutex_t * mutex_handle);

Description:

This services suspends on the condition variable specified by the
condition_var_handle parameter. Before this service is called, the thread must
have obtained the mutex specified by mutex_handle. Internally, PX5 releases
the mutex atomically with the thread suspension. Once the calling thread is
resumed via a signal or broadcast to the condition variable, the mutex is
reobtained before this service returns to the caller.

Upon return, the calling thread will again own the specified mutex –
regardless of completion status. The one exception is the case
where the mutex was not owned prior to calling this service.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

condition_var_handle Handle of the condition variable to

suspend on.

mutex_handle Handle of the mutex associated with this
condition variable.

Return Codes:

PX5_SUCCESS (0) Successful condition variable wait with timeout.
EINVAL Invalid condition variable handle or mutex

handle pointer. In addition, if the specified
mutex is not owned or if a different mutex is

PX5 RTOS

102

associated with this condition variable, this error
is returned.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

SUSPENSION. The calling thread is suspended until another thread
signals or broadcasts to the condition variable.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_timedwait, pthread_cond_signal

Small Example:

#include <pthread.h>

/* Condition variable and mutex handles. */

pthread_cond_t my_condition_var_handle;

pthread_mutex_t my_mutex_handle;

int status;

 /* Wait on this condition variable. */

 status = pthread_cond_wait(&my_condition_var_handle,

 &my_mutex_handle);

 /* If status is PX5_SUCCESS, the condition variable was

 signed/broadcasted, and mutex is again owned by the

 calling thread. */

PX5 RTOS

103

pthread_condattr_destroy

C Prototype:

#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *

 condition_var_attributes);

Description:

This service destroys the previously created condition variable attributes
structure pointed to by condition_var_attributes. Once destroyed, the
condition variable attributes structure cannot be used again unless it is
recreated.

API Parameters:

condition_var_attributes Pointer to the condition variable
attributes to destroy.

Return Codes:

PX5_SUCCESS (0) Successful condition variable attributes destroy.
EINVAL Invalid condition variable attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

104

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_init

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_condition_var_attributes;

int status;

 /* Destroy the condition variable attributes referenced by

 “my_condition_var_attributes”. */

 status = pthread_condattr_destroy(&my_condition_var_attributes);

 /* If status is PX5_SUCCESS, the condition variable attributes

 structure was destroyed. */

PX5 RTOS

105

pthread_condattr_getpshared

C Prototype:

#include <pthread.h>

int pthread_condattr_getpshared(pthread_condattr_t *

 condition_var_attributes, int * process_sharing_designation);

Description:

This service returns the current process sharing designation contained in the
condition variable attribute structure. By default, the process sharing
designation is PTHREAD_PROCESS_PRIVATE.

API Parameters:

condition_var_attributes Pointer to the condition variable

attributes.

process_sharing_designation

 Pointer to the destination for the
 condition variable process sharing
 designation.

Return Codes:

PX5_SUCCESS (0) Successful condition variable attributes process
sharing designation retrieval.

EINVAL Invalid condition variable attributes or process
sharing designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

106

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_condattr_*, pthread_cond_init

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_condition_var_attributes;

int process_sharing_designation;

int status;

 /* Get the process sharing designation found in the condition

 variable attributes structure “my_condition_var_attributes”. */

 status = pthread_condattr_getpshared(&my_condition_var_attributes,

 &process_sharing_designation);

 /* If status is PX5_SUCCESS, the “process_sharing_designation”

 contains the current process sharing designation. */

PX5 RTOS

107

pthread_condattr_init

C Prototype:

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *

 condition_var_attributes);

Description:

This service initializes the condition variable attributes structure with default
condition variable creation values. These defaults are as follows:

 Attribute Default Setting

 Process Sharing Private – PTHREAD_PROCESS_PRIVATE

API Parameters:

condition_var_attributes Pointer to the condition variable

 attributes structure to create.

Return Codes:

PX5_SUCCESS (0) Successful condition variable attributes structure
creation.

EINVAL Invalid condition variable attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

108

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_init

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_condition_var_attributes;

int status;

 /* Create the condition variable attributes structure

 “my_condition_var_attributes”. */

 status = pthread_condattr_init(&my_condition_var_attributes);

 /* If status is PX5_SUCCESS, the “my_condition_var_attributes”

 structure is ready for use. */

PX5 RTOS

109

pthread_condattr_setpshared

C Prototype:

#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *

 condition_var_attributes, int process_sharing_designation);

Description:

This service sets the process sharing designation in the condition variable
attribute structure to either PTHREAD_PROCESS_PRIVATE or
PTHREAD_PROCESS_SHARED. By default, the process sharing designation is
PTHREAD_PROCESS_PRIVATE.

API Parameters:

condition_var_attributes Pointer to the condition variable

 attributes.

process_sharing_designation

 Process sharing designation, either
 PTHREAD_PROCESS_PRIVATE or
 PTHREAD_PROCESS_SHARED.

Return Codes:

PX5_SUCCESS (0) Successful condition variable attributes process
sharing designation selection.

EINVAL Invalid condition variable attributes structure or
invalid process sharing designation.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

110

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_cond_init

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_condition_var_attributes;

int status;

 /* Set the process sharing designation in the condition variable

 attributes structure “my_condition_var_attributes”. */

 status = pthread_condattr_setpshared(&my_condition_var_attributes,

 PTHREAD_PROCESS_PRIVATE);

 /* If status is PX5_SUCCESS, the “my_condition_var_attributes”

 structure contains the PTHREAD_PROCESS_PRIVATE designation. */

PX5 RTOS

111

pthread_create

C Prototype:

#include <pthread.h>

int pthread_create(pthread_t * thread_handle,
 const pthread_attr * attributes,
 void * (*start_routine)(void *),
 void *arguments);

Description:

This service creates a new thread that starts execution at the caller’s
start_routine, passing verbatim the supplied arguments parameter. Note that
the optional attributes parameter can specify additional attributes for the
thread, including explicitly setting its priority, stack location, stack size, etc.
Please review the pthread_attr_* APIs for more information on available
thread creation attributes. The signal mask for the newly created thread is
inherited from the calling thread.

If the thread creation is successful, the newly created thread's handle is
returned in thread_handle. Otherwise, if the thread creation is unsuccessful,
an error code is returned (as defined below).

By default, threads are created as joinable, meaning that
another thread can wait for the thread to complete. All joinable
threads should use pthread_exit when their processing is
complete and either be joined or detached via pthread_join or
pthread_detach. Failure to do so can leave the thread in a
perpetual terminated state with all its resources allocated
(internal thread control structure and stack).

By default, threads are created with deferred cancellation
enabled. This can be changed dynamically via the
pthread_setcancelstate and pthread_setcanceltype APIs.

API Parameters:

thread_handle Pointer supplied by the caller to place the new

thread handle upon successful creation.

PX5 RTOS

112

attributes Optional pointer to the new thread attributes
structure, pthread_attr. Please see the
pthread_attr_* APIs for information on how to
specify thread creation attributes.

start_routine Specifies the new thread entry function. When

the new thread is executed, this function will be
called.

Arguments Specifies the value supplied to the start_routine
when called. Note this is only for use by the
application.

Return Codes:

PX5_SUCCESS (0) Successful new thread creation.
EINVAL Invalid argument(s).
EAGAIN Not enough resources to create the thread.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. If the newly created thread is the same or less
priority than the calling thread, there is no preemption–this service
simply returns immediately after creation of the new thread.

PREEMPTION. If the newly created thread is higher priority than the
calling thread, the calling thread is preempted, and execution takes
place in the newly created thread prior to returning from this
service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_exit, pthread_detach, pthread_join, pthread_cancel

PX5 RTOS

113

Small Example:

#include <pthread.h>

/* Define some memory for PX5. */

unsigned long memory_area[1024];

pthread_t new_thread_handle;

unsigned long new_thread_counter;

unsigned long main_thread_counter;

/* Define new thread's staring function. */

void * new_thread_start(void *arguments)

{

 /* Loop forever incrementing a counter. */

 while (1)

 {

 new_thread_counter++;

 }

}

int main(void)

{

int status;

 /* Call the PX5 start function. */

 status = pthread_start(memory_area, sizeof(memory_area));

 /* Check completion status. */

 if (status != PX5_SUCCESS)

 {

 printf(“Error starting PX5!\n”);

 exit(1);

 }

 /* Create the new thread. */

 status = pthread_create(&new_thread_handle, NULL,

 new_thread_start, NULL);

 /* Check completion status. */

 if (status != PX5_SUCCESS)

 printf("Error creating new thread!\n");

 /* In any case, simply loop in the main program, which is the

 initial thread. */

 while(1)

 {

 /* Just increment the main thread's counter. */

 main_thread_counter++;

 }

}

PX5 RTOS

114

pthread_detach

C Prototype:

#include <pthread.h>

int pthread_detach(pthread_t thread_handle);

Description:

This service places the specified thread in a detached state, such that it can’t
be joined or canceled in the future. It is equivalent to creating the thread with
the PTHREAD_CREATE_DETACHED attribute. When the specified, detached
thread exits or returns, all of its resources are immediately released.

A thread may call pthread_detach on itself.

API Parameters:

thread_handle Handle of previously created thread.

Return Codes:

PX5_SUCCESS (0) Successful detach of thread.
EINVAL Specified thread was already detached or not in

a joinable state.
ESRCH Specified thread could not be found.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

115

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_create, pthread_exit, pthread_join, pthread_cancel

Small Example:

#include <pthread.h>

pthread_t my_thread_handle;

int status;

 /* Set the detach state in the previously created thread. */

 status = pthread_detach(my_thread_handle);

 /* If status contains PX5_SUCCESS, the thread is now detached. */

PX5 RTOS

116

pthread_equal

C Prototype:

#include <pthread.h>

int pthread_equal(pthread_t first_thread, pthread_t second_thread);

Description:

This service compares two thread handles. If the handles are the same, a non-
zero value is returned. If they are not the same, a value of zero is returned.

API Parameters:

first_thread Handle of the first thread.

second_thread Handle of the second thread.

Return Codes:

0 A value of zero is returned if the handles are not
the same.

1 A value of 1 is returned if the handles are the
same.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

117

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_self

Small Example:

#include <pthread.h>

pthread_t thread_to_exit;

void * my_thread(void * argument)

{

 /* Perform some processing… */

/* Determine if this is the thread designated to exit by

 the global thread handle "thread_to_exit". */

if (pthread_equal(pthread_self(), thread_to_exit)

{

 /* Yes, this is the thread that needs to exit. */

 pthread_exit((void *) 7);

}

}

PX5 RTOS

118

pthread_exit

C Prototype:

#include <pthread.h>

void pthread_exit(void *exit_value);

Description:

This service terminates the currenting executing thread. If this thread is
detached, all of the thread’s resources are released. Any cancellation cleanup
handlers are popped and executed. The exit_value passed to this API will be
sent to a thread that has joined this thread via the pthread_join API, assuming
the value was requested in the join request (non-NULL destination value).

An implicit call to pthread_exit is made if the application returns
from the thread’s start routine.

If this function is called from the main thread (or the C main
function returns), all multithreading stops, and execution is transferred to the C
compiler's exit function.

API Parameters:

exit_value Even though the type is “void *” this parameter
is treated as a value and passed verbatim to a
thread that has joined this thread. If no thread
has joined, this parameter has no effect.

Return Codes:

None

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

PREEMPTION. If a higher-priority thread has joined this thread, the
exit processing will resume its execution, and preemption will occur.

PX5 RTOS

119

SUSPENSION. Once the currently executing thread exit processing is
complete, the thread enters a permanent terminated state of
suspension.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_detach, pthread_join, pthread_cancel

Small Example:

#include <pthread.h>

void * my_thread(void * argument)

{

 /* Perform some processing… */

 /* Processing is done, exit with a value of 7. */

 pthread_exit((void *) 7);

 /* Note: processing will never get here since exit does not

 return. */

}

PX5 RTOS

120

pthread_join

C Prototype:

#include <pthread.h>

int pthread_join(pthread_t thread_to_join, void ** value_destination);

Description:

This service suspends the currenting running thread until the specified thread
completes its processing. When the specified thread exits, the value supplied
in its exit call is returned in the destination specified by the caller–if a non-
NULL exit value destination pointer is supplied.

All joinable threads that complete, should be joined or detached via
pthread_join and pthread_detach, respectively.

Only one thread is allowed to join another thread. Any additional
join requests will return an error.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

thread_to_join Handle of thread to join, i.e., thread completion
to wait for.

value_desitination Destination for the value from the specified

thread’s exit call.

Return Codes:

PX5_SUCCESS (0) Successful thread join.
EINVAL Thread specified is not joinable.
ESRCH Thread specified is not a valid thread.

PX5 RTOS

121

EDEADLK Thread is attempting to join with itself, which
would create a deadlock.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

SUSPENSION. Once the currently executing thread is joined with the
thread specified, it enters a suspended state. The highest priority
ready thread will then start executing.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_exit, pthread_detach

Small Example:

#include <pthread.h>

pthread_t my_thread2_handle;

void * my_thread1(void * argument)

{

void * exit_value;

 /* Join the my_thread2. The API will suspend until my_thread_2

 exits. */

 pthread_join(my_thread2_handle, &my_thread_2_exit_value);

 /* When processing returns here, my_thread_2 has exited with a

 value of "7", which has been stored in "exit_value”. */

}

void * my_thread1(void * argument)

{

 pthread_exit((void *) 7);

}

PX5 RTOS

122

pthread_kill

C Prototype:

#include <signal.h>

int pthread_kill(pthread_t thread, int signal);

Description:

This service raises a signal for the specified thread. If the signal is masked, it is
added to the pending signals set. In addition, if the specified thread is
suspended waiting for this signal, it is resumed. Otherwise, if the signal is not
masked by the specified thread, the registered signal handler is invoked. If no
signal handler has been registered, an error is returned.

API Parameters:

thread Handle of thread to raise signal for.

signal Signal number to raise, valid values range from 0

through 31, where signal 0 does not cause any
actual signal processing – only error checking is
performed.

Return Codes:

PX5_SUCCESS (0) Successful signal raise.
EINVAL Invalid signal number or signal was unmasked,

but no signal handler was registered.
ESRCH Thread specified is not a valid thread.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

PX5 RTOS

123

NO PREEMPTION. If the thread is not waiting for this signal, or there
is no signal handler, or the signal handler does not unblock any
higher-priority suspended thread, no preemption takes place.

PREEMPTION. If a higher-priority thread is waiting for the signal,
when it is delivered, the waiting thread is resumed, and preemption
will occur.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_sigmask, sigaction, sigwait

Small Example:

#include <pthread.h>

pthread_t my_thread2_handle;

void * my_thread1(void * argument)

{

 /* Raise SIGUSR1 signal for “my_thread2_hanlde”. */

 pthread_kill(my_thread2_handle, SIGUSR1);

 /* If successful, the signal SIGUSR1 has been raised. */

}

PX5 RTOS

124

pthread_mutex_destroy

C Prototype:

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t * mutex_handle);

Description:

This service destroys the previously created mutex specified by mutex_handle.
If the mutex is still owned by another thread, an error is returned.

API Parameters:

mutex_handle Handle of the mutex to destroy.

Return Codes:

PX5_SUCCESS (0) Successful mutex destroy.
EINVAL Invalid mutex handle.
EBUSY A thread currently owns the mutex.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

125

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutex_create

Small Example:

#include <pthread.h>

/* Mutex handle. */

pthread_mutex_t my_mutex_handle;

int status;

 /* Destroy the mutex referenced by “my_mutex_handle”. */

 status = pthread_mutex_destroy(&my_mutex_handle);

 /* If status is PX5_SUCCESS, the mutex was destroyed. */

PX5 RTOS

126

pthread_mutex_init

C Prototype:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t * mutex_handle,

 pthread_mutexattr_t * mutex_attributes);

Description:

This service initializes (creates) a mutex with the optional mutex attributes. If
successful, the mutex handle is setup for further use by the application.

API Parameters:

mutex_handle Handle of the mutex to initialize.

mutex_attributes Optional mutex attributes. This value is NULL if
no mutex attributes are specified.

Return Codes:

PX5_SUCCESS (0) Successful mutex initialization.
EINVAL Invalid mutex handle pointer or mutex

attributes.
EBUSY Mutex is already created.
ENOMEM Insufficient memory to create mutex.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

127

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutexattr_*, pthread_mutex_destroy

Small Example:

#include <pthread.h>

/* Mutex handle. */

pthread_mutex_t my_mutex_handle;

int status;

 /* Create the mutex and setup “my_mutex_handle”. */

 status = pthread_mutex_init(&my_mutex_handle, NULL);

 /* If status is PX5_SUCCESS, the mutex was created, and the mutex

 handle is ready to use. */

PX5 RTOS

128

pthread_mutex_lock

C Prototype:

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t * mutex_handle);

Description:

If the mutex is available, this service assigns ownership of the mutex to the
calling thread. Otherwise, if the mutex is already owned by another thread,
the calling thread suspends until the mutex is released by the other thread.

If a thread terminates while owning a mutex, all other threads
waiting for the mutex will be indefinitely suspended.

API Parameters:

mutex_handle Handle of the mutex to lock.

Return Codes:

PX5_SUCCESS (0) Successful mutex lock.
EDEADLK Thread already owns mutex (non-recursive

mutex).
EINVAL Invalid mutex handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the mutex was available and ownership
assigned to the calling thread, no preemption takes place.

SUSPENSION. If the mutex is already owned by another thread, the
calling thread is suspended until the other thread releases ownership
via pthread_mutex_unlock.

PX5 RTOS

129

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutex_unlock

Small Example:

#include <pthread.h>

/* Mutex handle. */

pthread_mutex_t my_mutex_handle;

int status;

 /* Lock the mutex “my_mutex_handle”. */

 status = pthread_mutex_lock(&my_mutex_handle);

 /* If status is PX5_SUCCESS, the mutex in now owned by the

 calling thread. Any other thread attempting to lock

 the mutex will suspend. */

PX5 RTOS

130

pthread_mutex_trylock

C Prototype:

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t * mutex_handle);

Description:

If the mutex is available, this service assigns ownership of the mutex to the
calling thread. Otherwise, if the mutex is already owned by another thread,
this service immediately returns an error, i.e., there is no thread suspension
like the pthread_mutex_lock service.

If a thread terminates while owning a mutex, all other threads
waiting for the mutex will be indefinitely suspended.

API Parameters:

mutex_handle Handle of the mutex to try to lock.

Return Codes:

PX5_SUCCESS (0) Successful mutex lock.
EDEADLK Thread already owns mutex (non-recursive

mutex).
EBUSY Mutex already owned by another thread.
EINVAL Invalid mutex handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the mutex was available and ownership
assigned to the calling thread, no preemption takes place.

PX5 RTOS

131

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutex_lock, pthread_mutex_unlock

Small Example:

#include <pthread.h>

/* Mutex handle. */

pthread_mutex_t my_mutex_handle;

int status;

 /* Try to lock the mutex “my_mutex_handle”. */

 status = pthread_mutex_trylock(&my_mutex_handle);

 /* If status is PX5_SUCCESS, the mutex is now owned by the

 calling thread. Any other thread attempting to lock

 the mutex will suspend. */

PX5 RTOS

132

pthread_mutex_unlock

C Prototype:

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t * mutex_handle);

Description:

This service releases a previously owned mutex. If there are other threads
suspended waiting for the mutex, the oldest suspended thread is given
ownership and resumed.

API Parameters:

mutex_handle Handle of the mutex to unlock.

Return Codes:

PX5_SUCCESS (0) Successful mutex unlock.
EINVAL Invalid mutex handle pointer.
EPERM Calling thread does not own the mutex.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for the
mutex, no preemption takes place.

PREEMPTION. If a higher-priority thread is waiting for the mutex,
when it is given the mutex, the waiting thread is resumed, and
preemption will occur.

PX5 RTOS

133

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutex_lock, pthread_mutex_trylock

Small Example:

#include <pthread.h>

/* Mutex handle. */

pthread_mutex_t my_mutex_handle;

int status;

 /* Unlock the mutex “my_mutex_handle”. */

 status = pthread_mutex_unlock(&my_mutex_handle);

 /* If status is PX5_SUCCESS, the mutex is now unlocked, and no

 longer owned by the calling thread. */

PX5 RTOS

134

pthread_mutexattr_destroy

C Prototype:

#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t * mutex_attributes);

Description:

This service destroys the previously created mutex attributes structure
pointed to by mutex_attributes. Once destroyed, the mutex attributes
structure cannot be used again unless it is recreated.

API Parameters:

mutex_attributes Pointer to the mutex attributes to destroy.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes destroy.
EINVAL Invalid mutex attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

135

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_init

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Destroy the mutex attributes referenced by

 “my_mutex_attributes”. */

 status = pthread_mutexattr_destroy(&my_mutex_attributes);

 /* If status is PX5_SUCCESS, the mutex attributes structure

 was destroyed. */

PX5 RTOS

136

pthread_mutexattr_getprotocol

C Prototype:

#include <pthread.h>

int pthread_mutexattr_getprotocol(pthread_mutexattr_t

 *mutex_attributes, int * protocol);

Description:

This service returns the previously supplied mutex protocol. By default, the
process sharing designation is PTHREAD_PRIO_NONE.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

protocol Pointer to the destination for the previously
supplied mutex protocol.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex protocol
retrieval.

EINVAL Invalid mutex attributes or mutex protocol
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

137

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_setprotocol

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

char * my_mutex_protocol;

int status;

 /* Get the mutex protocol in the mutex attributes structure

 “my_mutex_attributes”. */

 status = pthread_mutexattr_getprotocol(&my_mutex_attributes,

 &my_mutex_protocol);

 /* If status is PX5_SUCCESS, “my_mutex_protocol” contains the

 previously supplied protocol. */

PX5 RTOS

138

pthread_mutexattr_getpshared

C Prototype:

#include <pthread.h>

int pthread_mutexattr_getpshared(pthread_mutexattr_t *mutex_attributes,

 int * process_sharing_designation);

Description:

This service returns the current process sharing designation contained in the
mutex attribute structure. By default, the process sharing designation is
PTHREAD_PROCESS_PRIVATE.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

process_sharing_designation

Pointer to the destination for the mutex process
sharing designation.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes process sharing
designation retrieval.

EINVAL Invalid mutex attributes or process sharing
designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

139

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_init

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int process_sharing_designation;

int status;

 /* Get the process sharing designation found in the mutex

 attributes structure “my_mutex_attributes”. */

 status = pthread_mutexattr_getpshared(&my_mutex_attributes,

 &process_sharing_designation);

 /* If status is PX5_SUCCESS, “process_sharing_designation”

 contains the current process sharing designation. */

PX5 RTOS

140

pthread_mutexattr_gettype

C Prototype:

#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t

 *mutex_attributes, int * type);

Description:

This service returns the previously supplied mutex type. By default, the
process sharing designation is PTHREAD_MUTEX_ERRORCHECK.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

type Pointer to the destination for the previously
supplied mutex type.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex type retrieval.
EINVAL Invalid mutex attributes or mutex type pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

141

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_settype

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

char * my_mutex_type;

int status;

 /* Get the mutex type in the mutex attributes structure

 “my_mutex_attributes”. */

 status = pthread_mutexattr_gettype(&my_mutex_attributes,

 &my_mutex_type);

 /* If status is PX5_SUCCESS, “my_mutex_type” contains the

 previously supplied mutex type. */

PX5 RTOS

142

pthread_mutexattr_init

C Prototype:

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *mutex_attributes);

Description:

This service initializes the mutex attributes structure with default mutex
creation values. These defaults are as follows:

 Attribute Default Setting

 Process Sharing Private – PTHREAD_PROCESS_PRIVATE

API Parameters:

mutex_attributes Pointer to the mutex attributes structure to

create.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes structure creation.
EINVAL Invalid mutex attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

143

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_destroy

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Create the mutex attributes structure “my_mutex_attributes”. */

 status = pthread_mutexattr_init(&my_mutex_attributes);

 /* If status is PX5_SUCCESS, the “my_mutex_attributes” structure is

 ready for use. */

PX5 RTOS

144

pthread_mutexattr_setprotocol

C Prototype:

#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t

 *mutex_attributes, int protocol);

Description:

This service sets the specified protocol in the previously created mutex
attributes structure. By default, the protocol is PTHREAD_PRIO_NONE.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

protocol Specified mutex protocol, as follows:

 PTHREAD_PRIO_NONE
 PTHREAD_PRIO_INHERIT

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex protocol set.
EINVAL Invalid mutex attributes or mutex protocol. Note

that PTHREAD_PRIO_PROTECT is not currently
supported.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

145

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_getprotocol

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

char * my_mutex_protocol;

int status;

 /* Set the mutex protocol in the mutex attributes structure

 “my_mutex_attributes”. */

 status = pthread_mutexattr_setprotocol(&my_mutex_attributes,

 PTHREAD_PRIO_INHERIT);

 /* If status is PX5_SUCCESS, “my_mutex_protocol” specifies that

 priority inheritance is enabled when the mutex using these

 attributes is created. */

PX5 RTOS

146

pthread_mutexattr_setpshared

C Prototype:

#include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *mutex_attributes,

 int process_sharing_designation);

Description:

This service sets the process sharing designation in the mutex attribute
structure to either PTHREAD_PROCESS_PRIVATE or
PTHREAD_PROCESS_SHARED. By default, the process sharing designation is
PTHREAD_PROCESS_PRIVATE.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

process_sharing_designation

Process sharing designation, either
PTHREAD_PROCESS_PRIVATE or
PTHREAD_PROCESS_SHARED.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes process sharing
designation selection.

EINVAL Invalid mutex attributes or invalid process
sharing designation.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

147

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_init

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Set the process sharing designation in the mutex

 attributes structure “my_mutex_attributes”. */

 status = pthread_mutexattr_setpshared(&my_mutex_attributes,

 PTHREAD_PROCESS_PRIVATE);

 /* If status is PX5_SUCCESS, the “my_mutex_attributes” structure

 contains the PTHREAD_PROCESS_PRIVATE designation. */

PX5 RTOS

148

pthread_mutexattr_settype

C Prototype:

#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t

 * mutex_attributes, int type);

Description:

This service sets the specified mutex type in the previously created mutex
attributes structure. By default, the type is PTHREAD_MUTEX_ERRORCHECK.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

type Specified mutex type, as follows:

 PTHREAD_MUTEX_NORMAL
 PTHREAD_MUTEX_ERRORCHECK
 PTHREAD_MUTEX_RECURSIVE

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex type set.
EINVAL Invalid mutex attributes or mutex type.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

149

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_gettype

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Set the mutex type in the mutex attributes structure

 “my_mutex_attributes”. */

 status = pthread_mutexattr_settype(&my_mutex_attributes,

 PTHREAD_MUTEX_RECURSIVE);

 /* If status is PX5_SUCCESS, “my_mutex_protocol” specifies that

 nested (recursive) mutex locking is enabled when the mutex using

 these attributes is created. */

PX5 RTOS

150

pthread_self

C Prototype:

#include <pthread.h>

pthread_t pthread_self(void);

Description:

This service returns the thread handle of the currently running thread.

API Parameters:

none

Return Codes:

pthread_t Handle of the currently running thread.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

151

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_equal

Small Example:

#include <pthread.h>

/* Thread handle. */

pthread_t my_thread_handle;

void * my_thread(void *)

{

 /* Pickup the thread handle for this thread. */

 my_thread_handle = pthread_self();

 /* my_thread_handle can now be used in other

 pthread API calls. */

}

PX5 RTOS

152

pthread_setcancelstate

C Prototype:

#include <pthread.h>

int pthread_setcancelstate(int new_state, int * old_state);

Description:

This service sets the calling thread’s cancel state as specified by new_state. If
old_state is non-NULL, the previous cancel state is stored in the specified
destination.

By default, threads are created with the cancel state of
PTHREAD_CANCEL_ENABLE.

API Parameters:

new_state New cancelation state, which is one of the
following:

 PTHREAD_CANCEL_ENABLE
 PTHREAD_CANCEL_DISABLE

old_state If non-NULL, destination to store the previous
cancel state of the calling thread.

Return Codes:

PX5_SUCCESS (0) Successful change of calling thread’s cancel
state.

EINVAL Invalid cancel state.

PX5 RTOS

153

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cancel, pthread_cleanup_pop, pthread_cleanup_push,
pthread_create, pthread_setcanceltype, pthread_testcancel

Small Example:

#include <pthread.h>

int status;

 /* Enable cancellation for the calling thread. */

 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

 /* Cancellation is now available for the calling thread. */

PX5 RTOS

154

pthread_setcanceltype

C Prototype:

#include <pthread.h>

int pthread_setcanceltype(int new_type, int old_type);

Description:

This service sets the calling thread’s cancel type as specified by new_type. If
old_type is non-NULL, the previous cancel type is stored in the specified
destination.

Threads making PX5 RTOS API calls should only use deferred
cancellation (PTHREAD_CANCEL_DEFERRED), since
asynchronous cancellation could terminate thread processing
inside of an API and leaving the system in an unknown state.

By default, threads are created with the cancel type of
PTHREAD_CANCEL_DEFERRED.

API Parameters:

new_type New cancelation type, which is one of the
following:

 PTHREAD_CANCEL_DEFERRED
 PTHREAD_CANCEL_ASYNCHRONOUS

old_type If non-NULL, destination to store the previous

cancel type of the calling thread.

Return Codes:

PX5_SUCCESS (0) Successful change of calling thread’s cancel type.
EINVAL Invalid cancel type.

PX5 RTOS

155

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cancel, pthread_cleanup_pop, pthread_cleanup_push,
pthread_create, pthread_setcancelstate, pthread_testcancel

Small Example:

#include <pthread.h>

int status;

 /* Enable asynchronous cancellation for the calling thread. */

 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

 /* Asynchronous cancellation is now enabled for calling thread. */

PX5 RTOS

156

pthread_sigmask

C Prototype:

#include <signal.h>

int pthread_sigmask(int operation, sigset_t * signal_set,

 sigset_t * previous_mask);

Description:

This service sets or clears signals in the currently executing thread’s signal
mask. The exact determination of how the signal mask is modified depends on
the operation parameter as described in the parameter section below. Note
that each thread inherits its initial signal mask from the thread that created it.

If a pending signal is unmasked and there is a corresponding signal handler,
the signal handler is executed prior to returning from this call.

Signals must be masked in order to synchronously wait for them via
one of the signal wait APIs.

API Parameters:

operation Specifies the operation to perform on the calling
thread’s signal mask. Valid operations are:

SIG_BLOCK The supplied signal set is used to
 block (set) signals in the thread’s
 signal mask.

 SIG_UNBLOCK The supplied signal set is used to
 unblock (clear) signals in the
 thread’s signal mask.

 SIG_SETMASK The supplied signal set is used to
 update the thread’s signal mask
 verbatim.

PX5 RTOS

157

signal_set The signal set bitmap used to modify the
thread’s signal mask based on the specified
operation.

previous_mask The thread’s previous signal mask.

Return Codes:

PX5_SUCCESS (0) Successful signal mask update.
EINVAL Invalid operation or signal set pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PREEMPTION. If a pending signal is unmasked and the
corresponding signal handler resumes a higher priority thread,
preemption will occur.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_kill, sigaction, sigwait

Small Example:

#include <pthread.h>

sigset_t new_signal_mask;

PX5 RTOS

158

void * my_thread(void *)

{

 /* Set the signal mask to all ones – masking everything. */

 sigfillset(&new_signal_mask);

 /* Now mask all signals for this thread. */

 pthread_sigmask(SIG_SETMASK, &new_signal_mask, NULL);

 /* All signals are now masked for this thread. */

}

PX5 RTOS

159

pthread_testcancel

C Prototype:

#include <pthread.h>

void pthread_testcancel(void);

Description:

This service checks for a pending cancel request for the calling thread. If
detected, the calling thread cancels itself via pthread_exit.

API Parameters:

None

Return Codes:

None

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If a cancel request is not pending for the calling
thread, there is no preemption possible with this service.

SUSPENSION. If cancelation is pending, the calling thread is
suspended due to termination.

Callable From:

PX5 RTOS

160

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cancel, pthread_cleanup_pop, pthread_cleanup_push,
pthread_create, pthread_setcancelstate, pthread_setcanceltype

Small Example:

#include <pthread.h>

 /* Test for pending cancelation for the calling thread. */

 pthread_testcancel();

 /* If we return, there was no pending cancelation request. */

PX5 RTOS

161

px5_errno_get

C Prototype:

#include <px5_errno.h>

int px5_errno_get(void);

Description:

This pthreads+ service retrieves the errno value of the currently executing
thread.

API Parameters:

None

Return Codes:

errno

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption is possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

PX5 RTOS

162

See Also:

px5_errno_set

Small Example:

#include <px5_errno.h>

int my_errno;

 /* Pickup the errno of the calling thread. */

 my_errno = px5_errno_get();

 /* Upon return, the thread’s errno is stored in “my_errno”. */

PX5 RTOS

163

px5_errno_set

C Prototype:

#include <px5_errno.h>

void px5_errno_set(int new_error);

Description:

This pthreads+ service sets the errno value of the currently executing thread.

API Parameters:

new_error New error value for the currently executing
thread.

Return Codes:

none

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

PX5 RTOS

164

See Also:

px5_errno_get

Small Example:

#include <px5_errno.h>

 /* Set the errno to EINVAL of the calling thread. */

 px5_errno_set(EINVAL);

 /* Upon return, the thread’s errno is EINVAL. */

PX5 RTOS

165

px5_mq_extend_open

C Prototype:

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

mqd_t px5_mq_extend_open(const char * queue_name, int operation,

 mode_t mode, mq_attr * queue_attributes,

 mq_extendattr * extend_attributes);

Description:

This pthreads+ service opens (creates) the message queue specified (with
optional extended attributes) and returns the message queue handle if
successful.

API Parameters:

queue_name Name of the queue to open/create.
operation Specifies how the queue will operate. The

supported options are:

 O_CREAT
 O_RDWR
 O_NONBLOCK

Both O_CREAT and O_RDWR should be specified.
The O_NONBLOCK option that disables threads
from suspending on the queue is optional.

mode Not currently used.
queue_attributes Attributes that specify the dimensions of the

 message queue, as defined by these structure
 members:

 mq_maxmsg
 mq_msgsize

 Where mq_maxmsg defines the total number
 of messages the queue can hold. The
 maximum size of each message (in bytes) is

PX5 RTOS

166

 defined by mq_msgsize. Note the size and
 priority of each message must be stored
 along with the message content. In addition,
 there is one pointer type required for each
 message. One most architecture, this
 amounts to 12 bytes of additional-per
 message overhead.
extend_attributes Optional extended attributes that can specify

 memory for the queue control structure as well
 as the queue memory area.

Return Codes:

queue handle Positive value represents the successfully
opened (created) queue handle.

PX5_ERROR (-1) Error attempting to open/create the queue.
Please use errno to retrieve the exact error:

 ENOSPC Not enough memory to create the
specified queue.

 EINVAL Invalid operation or invalid
attributes pointer.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

PX5 RTOS

167

See Also:

mq_open, mq_close, mq_getattr, mq_setattr

Small Example:

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

int status;

struct mq_attr my_queue_attributes;

mq_extendattr_t my_extended_queue_attributes;

mqd_t my_queue_handle;

 /* Setup the attributes for 100 total messages, where each

 message is a maximum of 16 bytes. */

 my_queue_attributes.mq_maxmsg = 100;

 my_queue_attributes.mq_msgsize = 16;

 /* Open (create) the queue “my_queue”. */

 my_queue_handle = px5_mq_extend_open(“my queue”,

 (O_CREAT | O_RDWR), 0,

 &my_queue_attributes,

 &my_extended_queue_attribute);

 /* If “my_queue_handle” is positive, the queue was successfully

 created. */

PX5 RTOS

168

px5_mq_extendattr_destroy

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_destroy(mq_extendattr_t * queue_attributes);

Description:

This pthreads+ service destroys the previously created extended message
queue attributes structure pointed to by queue_attributes. Once destroyed,
the extended message queue attributes structure cannot be used again unless
it is recreated.

API Parameters:

queue_attributes Pointer to the extended message queue
attributes to destroy.

Return Codes:

PX5_SUCCESS (0) Successful extended message queue attributes
destroy.

EINVAL Invalid extended message queue attributes
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

169

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open, px5_mq_extendattr_init, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message attribute structure. */

mq_extendattr_t my_queue_attributes;

int status;

 /* Destroy the extended message queue attributes referenced by

 “my_queue_attributes”. */

 status = px5_mq_extendattr_destroy(&my_queue_attributes);

 /* If status is PX5_SUCCESS, the extended message queue attributes

 structure was destroyed. */

PX5 RTOS

170

px5_mq_extendattr_getcontroladdr

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_getcontroladdr(mq_extendattr_t* queue_attributes,

 void ** queue_control_address);

Description:

This pthreads+ service returns the previously supplied message queue control
structure address.

API Parameters:

queue_attributes Pointer to the extended message queue

attributes.

queue_control_address Pointer to the destination for the
previously supplied message queue
control address.

Return Codes:

PX5_SUCCESS (0) Successful message queue control address
retrieval.

EINVAL Invalid extended message queue attributes or
message queue control address designation
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

171

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open, px5_mq_extendattr_init, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue attribute structure. */

mq_extendattr_t my_queue_attributes;

void * my_queue_control_address;

int status;

 /* Get the message queue control structure address in the

 extended message queue attributes structure

 “my_queue_attributes”. */

 status = px5_mq_extendattr_getcontroladdr(&my_queue_attributes,

 &my_queue_control_address);

 /* If status is PX5_SUCCESS, “my_queue_control_address”

 contains the address of the previously supplied message queue

 control memory. */

PX5 RTOS

172

px5_mq_extendattr_getcontrolsize

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_getcontrolsize(mq_extendattr_t* queue_attributes,

 size_t * queue_control_size);

Description:

This pthreads+ service returns the size of the internal message queue control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_mq_extendattr_setcontroladdr API.

API Parameters:

queue_attributes Pointer to the attributes.

queue_control_size Pointer to the destination for the
internal message queue control
structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal message queue
control structure size.

EINVAL Invalid extended message queue attributes or
invalid destination for message queue control
structure size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

PX5 RTOS

173

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open,px5_mq_extendattr_init,
px5_mq_extendattr_setcontroladdr, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue extended attribute structure. */

mq_extendattr_t my_queue_attributes;

size_t my_queue_control_size;

int status;

 /* Get the internal message queue control structure memory size. */

 status = px5_mq_extendattr_getcontrolsize(&my_queue_attributes,

 &my_queue_control_size);

 /* If status is PX5_SUCCESS, “my_queue_control_size”

 contains the size of the internal message queue control

 structure. */

PX5 RTOS

174

px5_mq_extendattr_getqueueaddr

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_getqueueaddr(mq_extendattr_t* queue_attributes,

 void ** queue_memory_address);

Description:

This pthreads+ service returns the previously supplied message queue
memory address.

API Parameters:

queue_attributes Pointer to the extended message queue

attributes.

queue_memory_address Pointer to the destination for the
previously supplied message queue
memory address.

Return Codes:

PX5_SUCCESS (0) Successful message queue memory address
retrieval.

EINVAL Invalid extended message queue attributes or
message queue memory address designation
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

175

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open,px5_mq_extendattr_init,
px5_mq_extendattr_setqueueaddr, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue attribute structure. */

mq_extendattr_t my_queue_attributes;

void * my_queue_memory_address;

int status;

 /* Get the message queue memory address in the

 extended message queue attributes structure

 “my_queue_attributes”. */

 status = px5_mq_extendattr_getqueueaddr(&my_queue_attributes,

 &my_queue_memory_address);

 /* If status is PX5_SUCCESS, “my_queue_memory_address”

 contains the address of the previously supplied message queue

 memory. */

PX5 RTOS

176

px5_mq_extendattr_getqueuesize

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_getqueuesize(mq_extendattr_t* queue_attributes,

 size_t * queue_memory_size);

Description:

This pthreads+ service returns the size of the previously supplied message
queue memory.

API Parameters:

queue_attributes Pointer to the attributes.

queue_memory_size Pointer to the destination for the
previously supplied message
queue memory size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of message queue memory
size.

EINVAL Invalid extended message queue attributes or
invalid destination for message queue memory
size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

PX5 RTOS

177

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open,px5_mq_extendattr_init,
px5_mq_extendattr_setqueueaddr, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue extended attribute structure. */

mq_extendattr_t my_queue_attributes;

size_t my_queue_memory_size;

int status;

 /* Get the message queue memory size. */

 status = px5_mq_extendattr_getqueuesize(&my_queue_attributes,

 &my_queue_memory_size);

 /* If status is PX5_SUCCESS, “my_queue_memory_size”

 contains the size of the message queue memory. */

PX5 RTOS

178

px5_mq_extendattr_init

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_init(mq_extendattr_t * queue_attributes);

Description:

This pthreads+ service initializes the extended message queue attributes
structure with default condition variable creation values. Note that the
extended message queue attributes are used only by the
px5_mq_extend_open API.

API Parameters:

queue_attributes Pointer to the extended message queue
attributes structure to create.

Return Codes:

PX5_SUCCESS (0) Successful extended message queue attributes
structure creation.

EINVAL Invalid extended message queue attributes
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

179

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open, px5_mq_extendattr_destroy, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Extended message queue attribute structure. */

mq_extendattr_t my_queue_attributes;

int status;

 /* Create the extended message queue attributes structure

 “my_queue_attributes”. */

 status = px5_mq_extendattr_init(&my_queue_attributes);

 /* If status is PX5_SUCCESS, the “my_queue_attributes”

 structure is ready for use. */

PX5 RTOS

180

px5_mq_extendattr_setcontroladdr

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_setcontroladdr(mq_extendattr_t* queue_attributes,

 void * queue_control_address,

 size_t queue_memory_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS message queue structure, as specified by
the address contained in the queue_control_address parameter. This memory
will subsequently be used for the next message queue created with this
attribute structure. The size of the memory required for the internal message
queue control structure can be found via a call to the
px5_mq_extendattr_getcontrol_size service.

Note that each message queue created must have its own
unique message queue control structure memory. Hence, the
message queue control memory supplied here is only valid for
one px5_mq_extend_open call.

API Parameters:

queue_attributes Pointer to the message queue attributes.

queue_control_address Pointer to the internal message queue
 control structure memory.

queue_control_size Size of specified message queue control

 structure memory.

Return Codes:

PX5 RTOS

181

PX5_SUCCESS (0) Successful specification of message queue
structure memory.

EINVAL Invalid message queue attributes or invalid size
of message queue control memory.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open,px5_mq_extendattr_getcontrolsize,
px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue attribute structure. */

mq_extendattr_t my_queue_attributes;

int status;

 /* Set the message queue control structure memory address in the

 extended message queue attributes

 structure “my_queue_attributes”. */

 status = px5_mq_extendattr_setcontroladdr(&my_queue_attributes,

 0x80000, 100);

PX5 RTOS

182

px5_mq_extendattr_setqueueaddr

C Prototype:

#include <mqueue.h>

int px5_mq_extendattr_setqueueaddr(mq_extendattr_t* queue_attributes,

 void * queue_memory_address,

 size_t queue_memory_size);

Description:

This pthreads+ service sets the internal message queue memory address to
the address specified by queue_memory_address. This address will
subsequently be used to supply the memory for the internal message queue
memory on the next queue created with this attribute structure.

Note that each message queue created must have its own
unique queue memory area. Hence, the message queue memory
address supplied here is only valid for one
px5_mq_extend_open call.

API Parameters:

queue_attributes Pointer to the message queue attributes.

queue_memory_address Pointer to the message queue memory

 address.

queue_memory_size Size of specified message queue memory.

Return Codes:

PX5_SUCCESS (0) Successful specification of message queue
memory.

EINVAL Invalid message queue attributes or invalid size
of message queue memory.

Real-time Scenarios:

PX5 RTOS

183

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_mq_extend_open,px5_mq_extendattr_init, px5_mq_extendattr_*

Small Example:

#include <mqueue.h>

/* Message queue attribute structure. */

mq_extendattr_t my_queue_attributes;

int status;

 /* Set the message queue memory address in the

 extended message queue attributes

 structure “my_queue_attributes”. */

 status = px5_mq_extendattr_setqueueaddr(&my_queue_attributes,

 0x90000, 1024);

PX5 RTOS

184

px5_pthread_attr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_attr_getcontroladdr(pthread_attr_t *attributes,

 void ** thread_control_address);

Description:

This pthreads+ service returns the thread control structure address stored in
the thread attributes structure. By default, this value is NULL unless specified
by the application via a call to px5_pthread_attr_setcontroladdr.

API Parameters:

attributes Pointer to a previously initialized
attributes structure.

thread_control_address Pointer to the destination of where to
return the thread control address of this
attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the thread control
address.

EINVAL Attributes structure pointer or thread control
address destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

185

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_attr_setcontroladdr

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

void * thread_control_address;

int status;

/* Get the thread control address in the previously initialized

 attributes. */

status = px5_pthread_attr_getcontroladdr(&my_thread_attributes,

 &thread_control_address);

/* If status contains PX5_SUCCESS, the thread control address value in

 this attribute set is contained in “thread_control_address”. */

PX5 RTOS

186

px5_pthread_attr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_attr_getcontrolsize(pthread_attr_t *attributes,

 size_t * thread_control_size);

Description:

This pthreads+ service returns the size of the internal thread control structure.
The main purpose of this API is to inform the application how much memory is
required for the px5_pthread_attr_setcontroladdr API.

API Parameters:

attributes Pointer to a previously initialized attributes

structure.
thread_control_size Pointer to the destination of where to return the

internal thread control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the internal thread control
size.

EINVAL Attributes pointer or internal thread control size
destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

187

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_attr_getcontroladdr, pthread_attr_setcontroladdr

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

size_t thread_control_size;

int status;

/* Get the internal thread control size. */

status = px5_pthread_attr_getcontrolsize(&my_thread_attributes,

 &thread_control_size);

/* If status contains PX5_SUCCESS, the internal thread control

 structure size is found in “thread_control_size”. */

PX5 RTOS

188

px5_pthread_attr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_attr_getname(pthread_attr_t *attributes,

 Char ** return_name);

Description:

This pthreads+ service returns the current thread name in the thread
attributes structure.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

return_name Pointer to the destination of where to return the
name in this attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the thread name.
EINVAL Attributes structure pointer or name destination

pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

189

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_attr_setname

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

char * my_name;

int status;

 /* Get the thread name in the previously initialized

 attributes. */

 status = px5_pthread_attr_getname(&my_thread_attributes,

 &my_name);

 /* If status contains PX5_SUCCESS, the thread name in this

 attribute set is stored in “my_name”. */

PX5 RTOS

190

px5_pthread_attr_getpriority

C Prototype:

#include <pthread.h>

int px5_pthread_attr_getpriority(pthread_attr_t *attributes,

 int * priority);

Description:

This pthreads+ service returns the current thread priority in the thread
attributes structure. By default, this value is PX5_DEFAULT_PRIORITY unless
specified by the application via a call to px5_pthread_attr_setpriority.

API Parameters:

attributes Pointer to a previously initialized attributes

structure.
priority Pointer to the destination of where to return the

priority of this attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the thread priority.
EINVAL Attributes structure pointer or priority

destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

191

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, px5_pthread_attr_setpriority

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int priority;

int status;

 /* Get the priority in the previously initialized

 attributes. */

 status = px5_pthread_attr_getpriority(&my_thread_attributes,

 &priority);

 /* If status contains PX5_SUCCESS, the priority in this

 attribute set is stored in “priority”. */

PX5 RTOS

192

px5_pthread_attr_gettimeslice

C Prototype:

#include <pthread.h>

int px5_pthread_attr_gettimeslice(pthread_attr_t *attributes,

 u_long * thread_time_slice);

Description:

This pthreads+ service returns the current thread time-slice stored in the
thread attributes structure. By default, this value is 0, which means time-
slicing is disabled. The time-slice value for thread creation can be changed via
the px5_pthread_attr_settimeslice service.

Each thread may have its own unique time-slice value through
specific invocation of px5_pthread_attr_settimeslice.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

thread_time_slice Pointer to the destination of where to return the
thread time-slice value of this attributes
structure.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of the thread per time-slice.
EINVAL Attributes structure pointer or thread time-slice

destination pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

193

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_attr_settimeslice

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

u_long thread_time_slice;

int status;

/* Get the thread time-slice in the previously initialized

 set of attributes. */

status = px5_pthread_attr_gettimeslice(&my_thread_attributes,

 &thread_time_slice);

/* If status contains PX5_SUCCESS, the thread time-slice value in this

 attribute set is stored in “thread_time_slice”. */

PX5 RTOS

194

px5_pthread_attr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_attr_setcontroladdr(pthread_attr_t *attributes,

 void * thread_control_address,

 size_t thread_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS thread control structure, as specified by the
address contained in the thread_control_address parameter. This memory will
subsequently be used for the next thread created with this attribute structure.
The size of the memory required for the internal thread control structure can
be found via a call to the px5_pthread_attr_getcontrolsize service.

Note that each thread created must have its own unique thread
control structure memory. Hence, the thread control memory
supplied here is only valid for one pthread_create call.

API Parameters:

attributes Pointer to a previously initialized

attributes structure.
thread_control_address Thread control address to use for the

next thread creation.
thread_control_size Size of memory pointed to by the thread

control address.

Return Codes:

PX5_SUCCESS (0) Successful setting of the thread control address.
EINVAL Attributes pointer or thread control address

pointer or size is invalid.

Real-time Scenarios:

PX5 RTOS

195

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, px5_pthread_attr_getcontroladdr,
px5_pthread_attr_getcontrolsize

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the thread control address to the absolute address of

 0x40000 in the previously initialized attributes. */

 status = px5_pthread_attr_setcontroladdr(&my_thread_attributes,

 (void *) 0x40000, 300);

 /* If status contains PX5_SUCCESS, the thread control address in this

 attribute structure is 0x40000. */

PX5 RTOS

196

px5_pthread_attr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_attr_setname(pthread_attr_t *attributes,

 char * name);

Description:

This pthreads+ service stores the specified thread name (ASCII string) in the
thread attributes structure.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

name Thread name in ASCII string format.

Return Codes:

PX5_SUCCESS (0) Successful setting of the thread name.
EINVAL Attributes pointer or specified thread name

pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

197

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_attr_getname

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

char my_name[] = “my thread name”;

int status;

 /* Set the thread name to “my thread name” in the previously

 initialized attributes. */

 status = px5_pthread_attr_setname(&my_thread_attributes,

 my_name);

 /* If status contains PX5_SUCCESS, the attributes structure now

 has the name of “my thread name”. */

PX5 RTOS

198

px5_pthread_attr_setpriority

C Prototype:

#include <pthread.h>

int px5_pthread_attr_setpriority(pthread_attr_t *attributes,

 int priority);

Description:

This pthreads+ service stores the specified priority in the thread attributes
structure. The thread priority specified must be between 0 and
(PX5_MAXIMUM_PRIORITIES – 1), where larger numbers represent higher
priority.

API Parameters:

attributes Pointer to a previously initialized attributes

structure.
priority Priority to store in the attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful setting of the priority.
EINVAL Attributes pointer or specified priority is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

199

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, px5_pthread_attr_getpriority

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the priority to 31 in the previously initialized

 attributes. */

 status = px5_pthread_attr_setpriority(&my_thread_attributes, 31);

 /* If status contains PX5_SUCCESS, the priority in the

 attributes structure is now 31. */

PX5 RTOS

200

px5_pthread_attr_settimeslice

C Prototype:

#include <pthread.h>

int px5_pthread_attr_settimeslice(pthread_attr_t *attributes,

 u_long time_slice);

Description:

This pthreads+ service stores the specified time-slice in the thread attributes
structure. A value of 0 disables time-slicing (default), while positive values
represent the number of timer ticks the thread can execute before giving
other threads of the same priority a chance to execute.

API Parameters:

attributes Pointer to a previously initialized attributes
structure.

time_slice Time-slice to store in the attributes structure.

Return Codes:

PX5_SUCCESS (0) Successful setting of the thread time-slice.
EINVAL Attributes structure pointer is invalid.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

201

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, px5_pthread_attr_gettimeslice

Small Example:

#include <pthread.h>

pthread_attr_t my_thread_attributes;

int status;

 /* Set the thread time-slice to 2 in the previously initialized

 attributes structure. */

 status = px5_pthread_attr_settimeslice(&my_thread_attributes, 2);

 /* If status contains PX5_SUCCESS, the time-slice in the

 attributes structure is now 2. */

PX5 RTOS

202

px5_pthread_condattr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_condattr_getcontroladdr(pthread_condattr_t

 * condition_var_attributes,

 void ** condition_var_control_address);

Description:

This pthreads+ service returns the previously supplied condition variable
control structure address.

API Parameters:

condition_var_attributes Pointer to the condition variable
attributes.

Condition_var_control_address

Pointer to the destination for the
previously supplied condition variable
control address.

Return Codes:

PX5_SUCCESS (0) Successful condition variable attributes condition
control address retrieval.

EINVAL Invalid condition variable attributes or condition
variable control address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

203

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_condattr_*, px5_pthread_condattr_setcontroladdr,
px5_pthread_condattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_cond_var_attributes;

void * my_cond_var_control_address;

int status;

 /* Get the condition variable control structure address in the

 condition variable attributes structure

 “my_cond_var_attributes”. */

 status = px5_pthread_condattr_getcontroladdr(&my_cond_var_attributes,

 &my_cond_var_control_address);

 /* If status is PX5_SUCCESS, “my_cond_var_control_address”

 contains the address of the previously supplied condition

 variable control memory. */

PX5 RTOS

204

px5_pthread_condattr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_condattr_getcontrolsize(pthread_condattr_t

 * condition_var_attributes,

 size_t * condition_var_control_size);

Description:

This pthreads+ service returns the size of the internal condition variable
control structure. The main purpose of this API is to inform the application
how much memory is required for the px5_pthread_condattr_setcontroladdr
API.

API Parameters:

condition_var_attributes Pointer to the condition variable

 attributes.

condition_var_control_size Pointer to the destination for the
internal condition variable control
structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal condition variable
control structure size.

EINVAL Invalid condition variable attributes or invalid
destination for condition variable control
structure size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

205

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_condattr_*, px5_pthread_condattr_setcontroladdr,
px5_pthread_condattr_getcontroladdr

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_cond_var_attributes;

size_t my_cond_var_control_size;

int status;

 /* Get the condition variable control structure memory size. */

 status = px5_pthread_condattr_getcontrolsize(

 &my_cond_var_attributes,&my_cond_var_control_size);

 /* If status is PX5_SUCCESS, “my_cond_var_control_size”

 contains the size of the internal condition variable control

 structure. */

PX5 RTOS

206

px5_pthread_condattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_condattr_getname(pthread_condattr_t

 * condition_var_attributes,

 char ** condition_var_name);

Description:

This pthreads+ service returns the previously supplied condition variable
name.

API Parameters:

condition_var_attributes Pointer to the condition variable
attributes.

Condition_var_name Pointer to the destination for the

previously supplied condition variable
name.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of last supplied condition
variable name.

EINVAL Invalid condition variable attributes or name
destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

207

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_condattr_*, px5_pthread_condattr_setname

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_cond_var_attributes;

char * my_cond_var_name;

int status;

 /* Get the last supplied condition variable name. */

 status = px5_pthread_condattr_getname(&my_cond_var_attributes,

 &my_cond_var_name);

 /* If status is PX5_SUCCESS, “my_cond_var_name” contains the

 name previously supplied. */

PX5 RTOS

208

px5_pthread_condattr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_condattr_setcontroladdr(pthread_condattr_t

 * condition_var_attributes,

 void * condition_var_control_address,

 size_t condition_var_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS condition variable structure, as specified by
the address contained in the condition_var_control_address parameter. This
memory will subsequently be used for the next condition variable created with
this attribute structure. The size of the memory required for the internal
condition variable control structure can be found via a call to the
px5_pthread_condattr_getcontrolsize service.

Note that each condition variable created must have its own unique
condition variable control structure memory. Hence, the condition
variable control memory supplied here is only valid for one
pthread_cond_init call.

API Parameters:

condition_var_attributes Pointer to the condition variable

attributes.

condition_var_control_address

 Pointer to the supplied condition variable
 control structure memory.

condition_var_control_size

 Size of specified condition variable
 control structure memory.

Return Codes:

PX5 RTOS

209

PX5_SUCCESS (0) Successful specification of condition variable
structure memory.

EINVAL Invalid condition variable attributes or invalid
size of condition variable control memory.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_condattr_*, pthread_condattr_getcontroladdr,
pthread_condattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_cond_var_attributes;

int status;

 /* Set the condition variable control structure address in the

 condition variable attributes structure

 “my_cond_var_attributes”. */

 status = pthread_condattr_setcontroladdr(&my_cond_var_attributes,

 0x60000, 60);

 /* If status is PX5_SUCCESS, the condition variable creation

 using these attributes will use address 0x60000 for the internal

 condition variable control structure. */

PX5 RTOS

210

px5_pthread_condattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_condattr_setname(pthread_condattr_t

 * condition_var_attributes,

 char * cond_var_name);

Description:

This pthreads+ service sets the condition variable name in the specified
attribute structure.

API Parameters:

condition_var_attributes Pointer to the condition variable
 attributes.

condition_var_name Pointer to the supplied condition variable

 name.

Return Codes:

PX5_SUCCESS (0) Successful condition variable name set.
EINVAL Invalid condition variable attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

211

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_cond_*, pthread_condattr_*, px5_pthread_condattr_getname

Small Example:

#include <pthread.h>

/* Condition variable attribute structure. */

pthread_condattr_t my_cond_var_attributes;

int status;

 /* Set the condition variable name in the condition variable

 attributes structure “my_cond_var_attributes”. */

 status = px5_pthread_condattr_setname(&my_cond_var_attributes,

 “my_cond_var_name”);

 /* If status is PX5_SUCCESS, “my_cond_var_name” is set in the

 condition variable attribute structure. */

PX5 RTOS

212

px5_pthread_event_flags_clear

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_clear(pthread_event_flags_t *

 event_flags_handle);

Description:

This pthreads+ service clears all events flags in the specified event flags group.

API Parameters:

event_flags_handle Handle of the event flags group.

Return Codes:

PX5_SUCCESS (0) Successful event flags clear.
EINVAL Invalid event flags handle pointer or any/all

events option.

PX5 RTOS

213

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption is possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flags_set

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Clear all event flags in the event flags group

 “my_event_flags_handle”. */

 status = px5_pthread_event_flags_clear(&my_event_flags_handle);

 /* If status is PX5_SUCCESS, all event flags are cleared. */

PX5 RTOS

214

px5_pthread_event_flags_create

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_create(pthread_event_flags_t *

 event_flags_handle,

 pthread_event_flagsattr_t * event_flags_attributes);

Description:

This pthreads+ service initializes (creates) an event flags group with the
optional event flags attributes. If successful, the event flags handle is setup for
further use by the application.

API Parameters:

event_flags_handle Handle of the event flags to create.

event_flags_attributes Optional event flags attributes. This value

is NULL if no event flags attributes are
specified.

Return Codes:

PX5_SUCCESS (0) Successful event flags initialization.
EINVAL Invalid event flags handle pointer or event flags

attributes.
EBUSY Event flags is already created.
ENOMEM Insufficient memory to create event flags.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

215

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flagsattr_*, px5_pthread_event_flags_destroy

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Create the event flags group, the handle of which is returned in

 “my_event_flags_handle”. */

 status = px5_pthread_event_flags_create(&my_event_flags_handle,

 NULL);

 /* If status is PX5_SUCCESS, the event flags group was created, and

 the event flags handle is ready to use. */

PX5 RTOS

216

px5_pthread_event_flags_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_destroy(pthread_event_flags_t *

 event_flags_handle);

Description:

This pthreads+ service destroys the previously created event flags group
specified by event_flags_handle. If the event flags group has any threads
waiting for events, an error is returned.

API Parameters:

event_flags_handle Handle of the event flags to destroy.

Return Codes:

PX5_SUCCESS (0) Successful event flags group destroy.
EINVAL Invalid event flags handle.
EBUSY A thread currently is suspended on the event

flags.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

217

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flags_create

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Destroy the event flags referenced by

 “my_evemt_flags_handle”. */

 status = px5_pthread_event_flags_destroy(&my_event_flags_handle);

 /* If status is PX5_SUCCESS, the event flags group was destroyed.

*/

PX5 RTOS

218

px5_pthread_event_flags_set

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_set(pthread_event_flags_t *

 event_flags_handle, u_long events_to_set);

Description:

This pthreads+ service sets all the event flags specified in events_to_set in the
event flags group identified by event_flags_handle. All threads suspended on
this event flags group that have their event flags request satisfied are
resumed.

API Parameters:

event_flags_handle Handle of the event flags group.

events_to_set Bit map of event flags to set.

Return Codes:

PX5_SUCCESS (0) Successful event flags set.
EINVAL Invalid event flags group handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for event
flags, no preemption takes place.

PREEMPTION. If a higher-priority thread was waiting for event flags
and their request is satisfied, those threads are resumed, and
preemption will occur.

PX5 RTOS

219

Callable From:

This service is callable from the thread context and from interrupt handlers
(ISRs).

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flags_wait

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Set event flags 7 and 3 (bits 7 and 3) in the event flags group

 “my_event_flags_handle”. */

 status = px5_pthread_event_flags_set(&my_event_flags_handle, 0x88);

 /* If status is PX5_SUCCESS, event flags 7 and 3 are now set. */

PX5 RTOS

220

px5_pthread_event_flags_trywait

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_trywait(pthread_event_flags_t *

 event_flags_handle, u_long requested_events,

 int all_or_any, u_long * received_events);

Description:

This pthreads+ service attempts to retrieve the event flags specified by the
requested_events parameter and in the manner specified by the all_or_any
parameter from the specified event flags group. If the requested events are
not available, this service returns an error.

API Parameters:

event_flags_handle Handle of the event flags group.

requested_events Requested event flags.

all_or_any This parameter specifies if all the event flags are

required (PTHREAD_ALL_EVENTS), or any of the
events specified are required
(PTHREAD_ANY_EVENT) to satisfy the request.

received_events Optional destination of where to return the
actual event flags that satisfied the request.

Return Codes:

PX5_SUCCESS (0) Successful event flags retrieval.
EINVAL Invalid event flags handle pointer or any/all

events option.
EAGAIN Requested event flags are not available.

PX5 RTOS

221

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption is possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flags_wait

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Attempt to get either flag 3 or flag 7 in the event flags group

 “my_event_flags_handle”. */

 status = px5_pthread_event_flags_trywait(&my_event_flags_handle,

 0x88, PTHREAD_ANY_EVENT, NULL);

 /* If status is PX5_SUCCESS, the either or both event flag 3 and 7

 were set. */

PX5 RTOS

222

px5_pthread_event_flags_wait

C Prototype:

#include <pthread.h>

int px5_pthread_event_flags_wait(pthread_event_flags_t *

 event_flags_handle, u_long requested_events,

 int all_or_any, u_long * received_events);

Description:

This pthreads+ service retrieves the event flags specified by the
requested_events parameter and in the manner specified by the all_or_any
parameter from the specified event flags group. If the requested events are
not available, this service suspends the calling thread.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

event_flags_handle Handle of the event flags group.

requested_events Requested event flags.

all_or_any This parameter specifies if all the event flags are

required (PTHREAD_ALL_EVENTS), or any of the
events specified are required
(PTHREAD_ANY_EVENT) to satisfy the request.

received_events Optional destination of where to return the
actual event flags that satisfied the request.

Return Codes:

PX5_SUCCESS (0) Successful event flags wait.
EINVAL Invalid event flags handle pointer or any/all

events option.

PX5 RTOS

223

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the event flags were available, no preemption
takes place.

SUSPENSION. If the event flags are not present, the calling thread is
suspended until the event flags become available.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flags_set

Small Example:

#include <pthread.h>

/* Event flags handle. */

pthread_event_flags_t my_event_flags_handle;

int status;

 /* Get either flag 3 or flag 7 in the event flags group

 “my_event_flags_handle”. */

 status = px5_pthread_event_flags_wait(&my_event_flags_handle,

 0x88, PTHREAD_ANY_EVENT, NULL);

 /* If status is PX5_SUCCESS, the either or both event flag 3 and 7

 were set. */

PX5 RTOS

224

px5_pthread_event_flagsattr_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_event_flagsattr_destroy(pthread_event_flagsattr_t *

 event_flags_attributes);

Description:

This pthreads+ service destroys the previously created event flags attributes
structure pointed to by event_flags_attributes. Once destroyed, the event
flags attributes structure cannot be used again unless it is recreated.

API Parameters:

event_flags_attributes Pointer to the event flags attributes to

 destroy.

Return Codes:

PX5_SUCCESS (0) Successful event flags attributes destroy.
EINVAL Invalid event flags attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

225

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_init

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

int status;

 /* Destroy the event flags attributes referenced by

 “my_event_flags_attributes”. */

 status = px5_pthread_event_flagsattr_destroy(

 &my_event_flags_attributes);

 /* If status is PX5_SUCCESS, the event flags attributes structure

 was destroyed. */

PX5 RTOS

226

px5_pthread_event_flagsattr_getcontroladdr

C Prototype:

#include <pthread.h>

int

px5_pthread_event_flagsattr_getcontroladdr(pthread_event_flagsattr_t

 * event_flags_attributes, void ** event_flags_control_address);

Description:

This pthreads+ service returns the previously supplied event flags control
structure memory address.

API Parameters:

event_flags_attributes Pointer to the event flags
 attributes.

event_flags_control_address Pointer to the destination for the

 previously supplied event flags
 control address.

Return Codes:

PX5_SUCCESS (0) Successful event flags attributes event flags
control address retrieval.

EINVAL Invalid event flags attributes, or event flags
control address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

227

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_setcontroladdr,
px5_pthread_event_flagsattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

void * my_event_flags_control_address;

int status;

 /* Get the event flags control structure address in the

 attributes structure “my_event_flags_attributes”. */

 status = px5_pthread_event_flagsattr_getcontroladdr(

 &my_event_flags_attributes,

 &my_event_flags_control_address);

 /* If status is PX5_SUCCESS, “my_event_flags_control_address”

 contains the address of the previously supplied event flags

 control memory. */

PX5 RTOS

228

px5_pthread_event_flagsattr_getcontrolsize

C Prototype:

#include <pthread.h>

int

px5_pthread_event_flagsattr_getcontrolsize(pthread_event_flagsattr_t

 * event_flags_attributes, size_t * event_flags_control_size);

Description:

This pthreads+ service returns the size of the internal event flags control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_pthread_event_flagsattr_setcontroladdr API.

API Parameters:

event_flags_attributes Pointer to the event flags attributes.

event_flags_control_size Pointer to the destination for the internal

 event flags control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal event flags
control structure size.

EINVAL Invalid event flags attributes or event flags
control structure size destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

229

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_setcontroladdr

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

size_t my_event_flags_control_size;

int status;

 /* Get the event flags control structure memory size. */

 status = px5_pthread_event_flagsattr_getcontrolsize(

 &my_event_flags_attributes, &my_event_flags_control_size);

 /* If status is PX5_SUCCESS, “my_event_flags_control_size”

 contains the size of the internal event flags

 control structure. */

PX5 RTOS

230

px5_pthread_event_flagsattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_event_flagsattr_getname(pthread_event_flagsattr_t

 * event_flags_attributes, char ** event_flags_name);

Description:

This pthreads+ service returns the previously supplied event flags name.

API Parameters:

event_flags_attributes Pointer to the event flags attributes.

event_flags_name Pointer to the destination for the

 previous event flags name.

Return Codes:

PX5_SUCCESS (0) Successful event flags attributes event flags
name retrieval.

EINVAL Invalid event flags attributes or event flags name
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

231

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

char * my_event_flags_name;

int status;

 /* Get the previous event flags name. */

 status = px5_pthread_event_flagsattr_getname(

 &my_event_flags_attributes, &my_event_flags_name);

 /* If status is PX5_SUCCESS, “my_event_flags_name” contains the

 name previously supplied. */

PX5 RTOS

232

px5_pthread_event_flagsattr_init

C Prototype:

#include <pthread.h>

int px5_pthread_event_flagsattr_init(pthread_event_flagsattr_t *

 event_flags_attributes);

Description:

This pthreads+ service initializes the event flags attributes structure with
default event flags creation values.

API Parameters:

event_flags_attributes Pointer to the event flags attributes

 structure to create.

Return Codes:

PX5_SUCCESS (0) Successful event flags attributes structure
creation.

EINVAL Invalid event flags attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

233

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_destroy

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

int status;

 /* Create the event flags attributes structure

 “my_event_flags_attributes”. */

 status =

 px5_pthread_event_flagsattr_init(&my_event_flags_attributes);

 /* If status is PX5_SUCCESS, the “my_event_flags_attributes”

 structure is ready for use. */

PX5 RTOS

234

px5_pthread_event_flagsattr_setcontroladdr

C Prototype:

#include <pthread.h>

int

px5_pthread_event_flagsattr_setcontroladdr(pthread_event_flagsattr_t

 * event_flags_attributes, void * event_flags_control_address,

 size_t event_flags_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS event flags structure, as specified by the
address contained in the event_flags_control_address parameter. This
memory will subsequently be used for the next event flags created with this
attribute structure. The size of the memory required for the internal event
flags control structure can be found via a call to the
px5_pthread_event_flagsattr_getcontrolsize service.

Note that each event flags created must have its own unique
event flags control structure memory. Hence, the event flags
control address supplied here is only valid for one
px5_pthread_event_flags_create call.

API Parameters:

event_flags_attributes Pointer to the event flags

 attributes.

event_flags_control_address Pointer to the supplied event flags
 control structure memory.

event_flags_control_size Size of memory specified.

Return Codes:

PX5_SUCCESS (0) Successful internal event flags control address
set.

PX5 RTOS

235

EINVAL Invalid event flags attributes or memory size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

int status;

 /* Provide the memory for the event flags control structure in the

 next event flags create call by placing it’s address in the

 attributes structure “my_event_flags_attributes”. */

 status = px5_pthread_event_flagsattr_setcontroladdr(

 &my_event_flags_attributes, 0x70000, 60);

 /* If status is PX5_SUCCESS, the next event flags creation using

 these attributes will use memory at address 0x70000 for the

 internal event flags control structure. */

PX5 RTOS

236

px5_pthread_event_flagsattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_event_flagsattr_setname(pthread_event_flagsattr_t

 * event_flags_attributes, char * event_flags_name);

Description:

This pthreads+ service sets the event flags name in the specified attribute
structure.

API Parameters:

event_flags_attributes Pointer to the event flags attributes.

event_flags_name Pointer to the supplied event flags name.

Return Codes:

PX5_SUCCESS (0) Successful event flags attributes event flags
name set.

EINVAL Invalid event flags attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

237

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_event_flags_*, px5_pthread_event_flagsattr_*,
px5_pthread_event_flagsattr_getname

Small Example:

#include <pthread.h>

/* Event flags attribute structure. */

pthread_event_flagsattr_t my_event_flags_attributes;

int status;

 /* Set the event flags name in the event flags attributes structure

 “my_event_flags_attributes”. */

 status = px5_pthread_event_flagsattr_setname(

 &my_event_flags_attributes, “my_event_flags_name”);

 /* If status is PX5_SUCCESS, “my_event_flags_name” is set in the

 event flags attribute structure. */

PX5 RTOS

238

px5_pthread_fastqueue_create

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_create(pthread_fastqueue_t *fastqueue_handle,

 pthread_event_flagsattr_t * fast_queue_attributes,

 size_t message_size, int max_messages);

Description:

This pthreads+ service initializes (creates) a fastqueue with the optional fast
queue attributes. If successful, the fastqueue handle is setup for further use by
the application.

API Parameters:

Fastqueue_handle Handle of the fastqueue to create.

fastqueue_attributes Optional fastqueue attributes. This value

is NULL if no fastqueue attributes are
specified.

message_size Fixed-size of queue message in bytes
(must be evenly divisible by
sizeof(u_long)).

max_messages Total number of messages in the queue.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue creation.
EINVAL Invalid fastqueue handle pointer or attributes.
EBUSY Fastqueue is already created.
ENOMEM Insufficient memory to create fastqueue.

PX5 RTOS

239

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueueattr_*, px5_pthread_fastqueue_destroy

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

int status;

 /* Create a fastqueue that can hold 100 4-byte messages, the handle

 of which is returned in “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_create(&my_fastqueue_handle, NULL,

 100, 4);

 /* If status is PX5_SUCCESS, the event flags group was created, and

 the event flags handle is ready to use. */

PX5 RTOS

240

px5_pthread_fastqueue_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_destroy(pthread_fastqueue_t *

 fastqueue_handle);

Description:

This pthreads+ service destroys the previously created fastqueue specified by
fastqueue_handle. If the fastqueue has any threads waiting for a messages, an
error is returned.

API Parameters:

fastqueue_handle Handle of the fastqueu to destroy.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue destroy.
EINVAL Invalid fastqueue handle.
EBUSY A thread currently is suspended on the

fastqueue.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

241

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueue_create

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

int status;

 /* Destroy the fastqueue referenced by

 “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_destroy(&my_fastqueue_handle);

 /* If status is PX5_SUCCESS, the fastqueue was destroyed. */

PX5 RTOS

242

px5_pthread_fastqueue_receive

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_receive(pthread_fastqueue_t *

 fastqueue_handle, u_long * message, size_t message_size);

Description:

This pthreads+ service receives a message from the specified fastqueue. If the
fastqueue is empty, this thread suspends until a message is sent to the
fastqueue. If there is a thread waiting on to send to the fastqueue, the
thread’s message is placed in the fastqueue and is resumed.

API Parameters:

fastqueue_handle Handle of the fastqueue.

message Pointer to the destination for the message.

message_size Size of the message in bytes (must be evenly
divisible by sizeof(u_long)).

Return Codes:

PX5_SUCCESS (0) Successful fastqueue receive.
EINVAL Invalid fastqueue handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are one or more messages in the
fastqueue, no preemption takes place.

PREEMPTION. If a higher-priority thread is waiting to send a
message to the fastqueue, it is resumed and preemption will occur.

PX5 RTOS

243

SUSPENSION. If the fastqueue is empty, the calling thread is
suspended until a message is sent to the fastqueue.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueue_send

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

u_long my_message;

int status;

 /* Receive message from the fastqueue “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_receive(&my_fastqueue_handle,

 &my_message, 1);

 /* If status is PX5_SUCCESS, “my_message” contains the message

 received. */

PX5 RTOS

244

px5_pthread_fastqueue_send

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_send(pthread_fastqueue_t *

 fastqueue_handle, u_long * message, size_t message_size);

Description:

This pthreads+ service sends the specified message to the specified fastqueue.
If there is a thread waiting on the fastqueue, this message is delivered to the
thread and it is resumed. If the fastqueue is full, this thread suspends until
there is room in the fastqueue.

API Parameters:

fastqueue_handle Handle of the fastqueue.

message Pointer to the start of the message.

message_size Size of the message in bytes (must be evenly
divisible by sizeof(u_long)).

Return Codes:

PX5_SUCCESS (0) Successful fastqueue send.
EINVAL Invalid fastqueue handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for a message
on the fastqueue, no preemption takes place.

PX5 RTOS

245

PREEMPTION. If a higher-priority thread is the first waiting for a
message, it is resumed and preemption will occur.

SUSPENSION. If the fastqueue is full, the calling thread is suspended
until there is room in the fastqueue.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueue_receive

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

u_long my_message;

int status;

 /* Set the message to 0x12345678. */

 my_message = 0x12345678;

 /* Send the message to the fastqueue “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_send(&my_fastqueue_handle,

 &my_message, 1);

 /* If status is PX5_SUCCESS, “my_message” was sent. */

PX5 RTOS

246

px5_pthread_fastqueue_tryreceive

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_tryreceive(pthread_fastqueue_t *

 fastqueue_handle, u_long * message, size_t message_size);

Description:

This pthreads+ service attempts to receive a message from the specified
fastqueue. If the fastqueue is empty, this service returns an error.

API Parameters:

fastqueue_handle Handle of the fastqueue.

message Pointer to the destination for the message.

message_size Size of the message in bytes (must be evenly

divisible by sizeof(u_long)).

Return Codes:

PX5_SUCCESS (0) Successful fastqueue receive.
EINVAL Invalid fastqueue handle pointer.
EAGAIN Message is not available (fastqueue is empty).

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are one or more messages in the
fastqueue, no preemption takes place.

PREEMPTION. If a higher-priority thread is waiting to send a
message to the fastqueue, it is resumed and preemption will occur.

PX5 RTOS

247

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueue_receive

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

u_long my_message;

int status;

 /* Try to receive message from the fastqueue

 “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_tryreceive(&my_fastqueue_handle,

 &my_message, 1);

 /* If status is PX5_SUCCESS, “my_message” contains the message

 received. */

PX5 RTOS

248

px5_pthread_fastqueue_trysend

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueue_trysend(pthread_fastqueue_t *

 fastqueue_handle, u_long * message, size_t

message_size);

Description:

This pthreads+ service tries to sends the specified message to the specified
fastqueue. If there is a thread waiting on the fastqueue, this message is
delivered to the thread and it is resumed. If the fastqueue is full, an error is
returned.

API Parameters:

fastqueue_handle Handle of the fastqueue.

message Pointer to the start of the message.

message_size Size of the message in bytes (must be evenly
divisible by sizeof(u_long)).

Return Codes:

PX5_SUCCESS (0) Successful fastqueue send.
EINVAL Invalid fastqueue handle pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for a message
on the fastqueue, no preemption takes place.

PX5 RTOS

249

PREEMPTION. If a higher-priority thread is the first waiting for a
message, it is resumed and preemption will occur.

Callable From:

This service is callable from the thread context and from interrupt handlers
(ISRs).

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueue_send

Small Example:

#include <pthread.h>

/* Fastqueue handle. */

pthread_fastqueue_t my_fastqueue_handle;

u_long my_message;

int status;

 /* Set the message to 0x12345678. */

 my_message = 0x12345678;

 /* Try to send the message to the fastqueue

 “my_fastqueue_handle”. */

 status = px5_pthread_fastqueue_trysend(&my_fastqueue_handle,

 &my_message, 1);

 /* If status is PX5_SUCCESS, “my_message” was sent. */

PX5 RTOS

250

PX5 RTOS

251

px5_pthread_fastqueueattr_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_destroy(pthread_fastqueueattr_t *

 fastqueue_attributes);

Description:

This pthreads+ service destroys the previously created fastqueue attributes
structure pointed to by fastqueue_attributes. Once destroyed, the fastqueue
attributes structure cannot be used again unless it is recreated.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes to

 destroy.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue attributes destroy.
EINVAL Invalid fastqueue attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

252

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_init

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

int status;

 /* Destroy the fastqueue attributes referenced by

 “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_destroy(

 &my_fastqueue_attributes);

 /* If status is PX5_SUCCESS, the fastqueue attributes structure

 was destroyed. */

PX5 RTOS

253

px5_pthread_fastqueueattr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_getcontroladdr(pthread_fastqueueattr_t

 * fastqueue_attributes, void ** fastqueue_control_address);

Description:

This pthreads+ service returns the previously supplied fastqueue control
structure memory address.

API Parameters:

fastqueue_attributes Pointer to the fastqueue

 attributes.

fastqueue_control_address Pointer to the destination for the
 previously supplied fastqueue
 control address.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue attributes fastqueue
control address retrieval.

EINVAL Invalid fastqueue attributes, or fastqueue control
address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

254

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_setcontroladdr,
px5_pthread_fastqueueattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

void * my_fastqueue_control_address;

int status;

 /* Get the fastqueue control structure address in the

 attributes structure “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_getcontroladdr(

 &my_fastqueue_attributes,

 &my_fastqueue_control_address);

 /* If status is PX5_SUCCESS, “my_fastqueue_control_address”

 contains the address of the previously supplied fastqueue

 control memory. */

PX5 RTOS

255

px5_pthread_fastqueueattr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_getcontrolsize(pthread_fastqueueattr_t

 * fastqueue_attributes, size_t * fastqueue_control_size);

Description:

This pthreads+ service returns the size of the internal fastqueue control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_pthread_fastqueueattr_setcontroladdr API.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes.

fastqueue_control_size Pointer to the destination for the internal
 fastqueue control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal fastqueue control
structure size.

EINVAL Invalid fastqueue attributes or fastqueue control
structure size destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

256

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_setcontroladdr

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

size_t my_fastqueue_control_size;

int status;

 /* Get the fastqueue control structure memory size. */

 status = px5_pthread_fastqueueattr_getcontrolsize(

 &my_fastqueue_attributes, &my_fastqueue_control_size);

 /* If status is PX5_SUCCESS, “my_fastqueue_control_size”

 contains the size of the internal fastqueue

 control structure. */

PX5 RTOS

257

px5_pthread_fastqueueattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_getname(pthread_fastqueueattr_t

 * fastqueue_attributes, char ** fastqueue_name);

Description:

This pthreads+ service returns the previously supplied fastqueue name.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes.

fastqueue_name Pointer to the destination for the

 previous fastqueue name.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue attributes fastqueue name
retrieval.

EINVAL Invalid fastqueue attributes or fastqueue name
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

258

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

char * my_fastqueue_name;

int status;

 /* Get the previous fastqueue name. */

 status = px5_pthread_fastqueueattr_getname(

 &my_fastqueue_attributes, &my_fastqueue_name);

 /* If status is PX5_SUCCESS, “my_fastqueue_name” contains the

 name previously supplied. */

PX5 RTOS

259

px5_pthread_fastqueueattr_getqueueaddr

C Prototype:

#include <pthead.h>

int px5_pthread_fastqueueattr_getqueueaddr(pthread_fastqueueattr_t*

 fastqueue_attributes,

 void ** fastqueue_memory_address);

Description:

This pthreads+ service returns the previously supplied fastqueue memory area
address.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes.

fastqueue_memory_address Pointer to the destination for the

previously supplied fastqueue memory
area address.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue memory area address
retrieval.

EINVAL Invalid fastqueue attributes or fastqueue
memory area address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

260

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*

Small Example:

#include <mqueue.h>

/* Fastqueue queue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

void * my_fastqueue_memory_address;

int status;

 /* Get the fastqueue memory area address in the

 fastqueue attributes structure

 “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_getqueueaddr(

 &my_fastqueue_attributes,

 &my_queue_memory_address);

 /* If status is PX5_SUCCESS, “my_fastqueue_memory_address”

 contains the address of the previously supplied fastqueue

 memory. */

PX5 RTOS

261

px5_pthread_fastqueueattr_getqueuesize

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_getqueuesize(pthread_fastqueueattr_t*

 fastqeueu_attributes, size_t * fastqueue_memory_size);

Description:

This pthreads+ service returns the size of the previously supplied fastqueue
memory area.

API Parameters:

fastqueue_attributes Pointer to the attributes.

fastqueue_memory_size Pointer to the destination for the
previously supplied fastqueue
memory area size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of fastqueue memory area
size.

EINVAL Invalid extended fastqueue attributes or invalid
destination for fastqueue memory area size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

PX5 RTOS

262

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*

Small Example:

#include <pthread.h>

/* Fastqueue extended attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

size_t my_fastqueue_memory_size;

int status;

 /* Get the fastqueue memory area size. */

 status = px5_pthread_fastqueueattr_getqueuesize(

 &my_fastqueue_attributes, &my_fastqueue_memory_size);

 /* If status is PX5_SUCCESS, “my_fastqueue_memory_size”

 contains the size of the fastqueue memory area. */

PX5 RTOS

263

px5_pthread_fastqueueattr_init

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_init(pthread_fastqueueattr_t *

 fastqueue_attributes);

Description:

This pthreads+ service initializes the fastqueue attributes structure with
default fastqueue creation values.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes

 structure to create.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue attributes structure
creation.

EINVAL Invalid fastqueue attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

264

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_destroy

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

int status;

 /* Create the fastqueue attributes structure

 “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_init(&my_fastqueue_attributes);

 /* If status is PX5_SUCCESS, the “my_fastqueue_attributes”

 structure is ready for use. */

PX5 RTOS

265

px5_pthread_fastqueueattr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_setcontroladdr(pthread_fastqueueattr_t

 * fastqueue_attributes, void * fastqueue_control_address,

 size_t fastqueue_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS fastqueue structure, as specified by the
address contained in the fastqueue_control_address parameter. This memory
will subsequently be used for the fastqueue created with this attribute
structure. The size of the memory required for the internal fastqueue control
structure can be found via a call to the
px5_pthread_fastqueueattr_getcontrolsize service.

Note that each fastqueue created must have its own unique
fastqueue control structure memory. Hence, the fastqueue
control address supplied here is only valid for one
px5_pthread_fastqueue_create call.

API Parameters:

fastqueue_attributes Pointer to the fastqueue

 attributes.

fastqueue_control_address Pointer to the supplied fastqueue
 control structure memory.

fastqueue_control_size Size of memory specified.

Return Codes:

PX5_SUCCESS (0) Successful internal fastqueue control address
set.

PX5 RTOS

266

EINVAL Invalid fastqueue attributes or memory size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

int status;

 /* Provide the memory for the fastqueue control structure in the

 next fastqueue create call by placing it’s address in the

 attributes structure “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_setcontroladdr(

 &my_fastqueue_attributes, 0x90000, 60);

 /* If status is PX5_SUCCESS, the next fastqueue creation using

 these attributes will use memory at address 0x90000 for the

 internal fastqueue control structure. */

PX5 RTOS

267

px5_pthread_fastqueueattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_setname(pthread_fastqueueattr_t

 * fastqueue_attributes, char * fastqueue_name);

Description:

This pthreads+ service sets the fastqueue name in the specified attribute
structure.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes.

fastqueue_name Pointer to the supplied fastqueue name.

Return Codes:

PX5_SUCCESS (0) Successful fastqueue attributes fastqueue name
set.

EINVAL Invalid fastqueue attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

268

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,
px5_pthread_fastqueueattr_getname

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

int status;

 /* Set the fastqueue name in the fastqueue attributes structure

 “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_setname(

 &my_fastqueue_attributes, “my_fastqueue_name”);

 /* If status is PX5_SUCCESS, “my_fastqueue_name” is set in the

 fastqueue attribute structure. */

PX5 RTOS

269

px5_pthread_fastqueueattr_setqueueaddr

C Prototype:

#include <pthread.h>

int px5_pthread_fastqueueattr_setqueueaddr(pthread_fastqueueattr_t*

 fastqueue_attributes,

 void * fastqueue_memory_address,

 size_t fastqueue_memory_size);

Description:

This pthreads+ service sets the internal fastqueue message memory address
to the address specified by fastqueue_memory_address. This address will
subsequently be used to supply the memory for the message area on the next
fastqueue created with this attribute structure.

Note that each fastqueue created must have its own unique
fastqueue memory area. Hence, the memory address supplied
here is only valid for one px5_pthread_fastqueue_create call.

API Parameters:

fastqueue_attributes Pointer to the fastqueue attributes.

fastqueue_memory_address Pointer to the fastqueue message

 memory area address.

fastqueue_memory_size Size of specified fastqueue memory area.

Return Codes:

PX5_SUCCESS (0) Successful specification of fastqueue memory.
EINVAL Invalid fastqueue attributes or invalid size of

fastqueue message memory area.

PX5 RTOS

270

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_fastqueue_*, px5_pthread_fastqueueattr_*,

Small Example:

#include <pthread.h>

/* Fastqueue attribute structure. */

pthread_fastqueueattr_t my_fastqueue_attributes;

int status;

 /* Set the fastqueue message memory area address in the

 fastqueue attributes structure “my_fastqueue_attributes”. */

 status = px5_pthread_fastqueueattr_setqueueaddr(

 &my_fastqueue_attributes, 0x90000, 1024);

PX5 RTOS

271

px5_pthread_information_get

C Prototype:

#include <pthread.h>

int px5_pthread_information_get(pthread_t thread_handle,

 char **name, int * state, int * priority,

 void ** stack_limit, void ** stack_pointer,

 u_long * minimum_stack, pthread_t * next_thread);

Description:

This pthreads+ service retrieves the specified information from the specified
thread.

API Parameters:

thread_handle Handle of thread to get information about.
name If non-NULL, destination for the specified

thread’s name.
state If non-NULL, destination for the specified

thread’s current state. A value of zero indicates
the thread is currently ready for execution. All
other values indicate the thread is blocked or has
finished, or been canceled.

priority If non-NULL, destination for the specified

thread’s priority.
stack_limit If non-NULL, destination for the specified

thread’s stack limit.
stack_pointer If non-NULL, destination for the specified

thread’s current stack pointer.
minimum_stack If non-NULL, destination for the specified

thread’s minimum stack value.
next_thread If non-NULL, destination for the specified next

thread handle. This API can be called
successively to examine all threads by using this
parameter until the original thread handle is
found.

PX5 RTOS

272

Return Codes:

PX5_SUCCESS (0) Successful information retrieved from the
specified thread.

ESRCH Invalid thread handle.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_attr_*, pthread_create

PX5 RTOS

273

Small Example:

#include <pthread.h>

pthread_t my_thread_handle;

char * name;

int state;

int priority;

void * stack_limit;

void * stack_pointer;

u_long minimum_stack;

pthread_t next_thread;

int status;

 /* Get information about “my_thread_handle”. */

 status = px5_pthread_information_get(&my_thread_handle,

 &name, &state, &priority, &stack_limit, &stack_pointer,

 &minimum_stack, &next_thread);

 /* If status contains PX5_SUCCESS, the information about

 “my_thread_handle” is available for use. */

PX5 RTOS

274

px5_pthread_memory_manager_enable

C Prototype:

#include <pthread.h>

int px5_pthread_memory_manager_enable(void);

Description:

This pthreads+ service enables full management of the remaining amount of
memory supplied by the application when the PX5 RTOS is started via
px5_pthread_start. The memory allocated with all subsequent system object
creation and destruction will be fully managed.

This API creates a PX5 RTOS variable-length memory pool in
order to manage the memory. This memory pool should not be
released by the application.

API Parameters:

none

Return Codes:

PX5_SUCCESS (0) Successful enablement of internal PX5 RTOS
memory management.

EINVAL Invalid (NULL) pointer supplied to the
px5_pthread_start API.

ENOME Not enough memory remaining.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. This service does not result in preemption.

PX5 RTOS

275

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memory_manager_get, px5_pthread_memory_manager_set,
px5_pthread_start

Small Example:

#include <pthread.h>

/* Enable full management of PX5 RTOS memory. */

status = px5_pthread_memory_manager_enable();

/* If status is PX5_SUCCESS, all default memory

 allocation/deallocations are managed by the PX5 RTOS. */

PX5 RTOS

276

px5_pthread_memory_manager_get

C Prototype:

#include <pthread.h>

int px5_pthread_memory_manager_get(

 void *(** memory_allocate)(u_int type, u_long size),

 void (** memory_release)(u_int type, void *memory_to_release));

Description:

This pthreads+ service retrieves the internal memory manager allocate and
release function pointers. These function pointers can be used to restore the
previous memory manager allocation and deallocation selection.

By default, the simple sequential memory allocation manager is
setup when PX5 begins operation via px5_pthread_start. This
memory manager does not support releasing memory. Hence,
the memory_release function pointer is NULL.

API Parameters:

memory_allocate Destination for current memory allocation
function pointer.

memory_release Destination for current memory release function

pointer.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of memory manager function
pointers.

EINVAL Invalid (NULL) destination pointer(s) supplied.

Real-time Scenarios:

PX5 RTOS

277

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. This service does not result in preemption.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memory_manager_set, px5_pthread_start

Small Example:

#include <pthread.h>

void *(* my_memory_allocate)(u_int type, u_long size);

void (* my_memory_release)(u_int type, void *memory_to_release);

int status;

/* Retrieve the current memory manager function pointers. */

status = px5_pthread_memory_manager_get(&my_memory_allocate,

 &my_memory_release);

/* If status is PX5_SUCCESS, the “my_memory_allocate” and

 “my_memory_release” contain the current default memory manager

 allocate and release function pointers. */

PX5 RTOS

278

px5_pthread_memory_manager_set

C Prototype:

#include <pthread.h>

int px5_pthread_memory_manager_set(

 void *(* memory_allocate)(u_int type, u_long size),

 void (* memory_release)(u_int type, void *memory_to_release));

Description:

This pthreads+ service installs the specified memory manager allocate and
release function pointers.

API Parameters:

memory_allocate Memory manager’s allocation function pointer.

memory_release Memory manager’s memory release function
pointer.

Return Codes:

PX5_SUCCESS (0) Successful setup of memory manager function
pointers.

EINVAL Invalid (NULL) allocation function pointer
supplied.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. This service does not result in preemption.

PX5 RTOS

279

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memory_manager_get, px5_pthread_start

Small Example:

#include <pthread.h>

void *my_memory_allocate(u_int type, u_long size)

{

void *memory;

 /* Assuming thread-safe malloc, simply malloc the memory. If not,

 the malloc and free must be protected by mutex. */

 memory = malloc(size);

 /* Return the memory. */

 return(memory);

}

void my_memory_release(u_int type, void *memory_to_release)

{

 /* Release the memory. */

 free(memory);

}

/* Setup the new memory manager allocate and release memory

 routines. */

status = px5_pthread_memory_manager_set(my_memory_allocate,

 my_memory_release);

/* If status is PX5_SUCCESS, the “my_memory_allocate” and

 “my_memory_release” memory manager routines will be used for default

 internal memory allocation and deallocation. */

PX5 RTOS

280

px5_pthread_memorypool_allocate

C Prototype:

#include <pthread.h>

int px5_pthread_memorypool_allocate(pthread_memorypool_t *

 memorypool_handle, void ** allocated_memory,

 size_t request_size);

Description:

This pthreads+ service attempts to allocate memory from the specified
memory pool. If there is not enough memory in the pool, the calling thread is
suspended until the request can be satisfied.

The memory in the memory pool is managed as a linked-list.
The number of fragments in this linked-list is unknown and can
vary over time. Hence, the processing time for allocation is
undeterministic and therefore this API should not be used in
hard real-time situations.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

memorypool_handle Handle of the memory pool.

allocated_memory Destination pointer to return the allocated
memory.

request_size Number of bytes requested.

Return Codes:

PX5_SUCCESS (0) Successful memory allocation.
EINVAL Invalid memory pool handle pointer, allocated

memory destination pointer, or reqested size.

PX5 RTOS

281

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the requested memory is available, no
preemption takes place.

SUSPENSION. If the requested memory is not available, the calling
thread is suspended until the memory becomes available.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypool_free

Small Example:

#include <pthread.h>

/* Memory pool handle and pointer for allocated memory. */

pthread_memorypool_t my_memorypool_handle;

void * allocated_memory;

int status;

 /* Attempt to allocate 100 bytes from “my_memorypool_handle.” */

 status = px5_pthread_memorypool_allocate(&my_memorypool_handle,

 &allocated_memory, 100);

 /* If status is PX5_SUCCESS, a pointer to the allocated memory is

 in “allocated_memory.” */

PX5 RTOS

282

px5_pthread_memorypool_create

C Prototype:

#include <pthread.h>

int px5_pthread_memorypool_create(pthread_memorypool_t *

 memorypool_handle,

 pthread_memorypoolattr_t * memorypool_attributes,

 void *pool_start, size_t pool_size);

Description:

This pthreads+ service creates a variable-length memory pool with the
optional memory pool attributes. If successful, the memory pool handle is
setup for further use by the application.

API Parameters:

memorypool_handle Handle of the memory pool.

memorypool_attributes Optional memory pool attributes. This

value is NULL if no memory pool
attributes are specified.

pool_start Staring address of the memory area for
the pool. This address must be at least 4-
byte aligned.

pool_size Numbe of byte in the memory area for

the pool.

Return Codes:

PX5_SUCCESS (0) Successful memory pool creation.
EINVAL Invalid memor pool handle or pool start.
EBUSY Memory pool is already created.
ENOMEM Insufficient memory to the memory pool.

PX5 RTOS

283

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypoolattr_*, px5_pthread_memorypool_destroy

Small Example:

#include <pthread.h>

/* Memory pool handle. */

pthread_memorypool_t my_memorypool_handle;

int status;

 /* Create a memory pool, the handle of which is returned in

 “my_memorypool_handle”. */

 status = px5_pthread_memorypool_create(&my_memorypool_handle,

 NULL, 0x40000, 8196);

 /* If status is PX5_SUCCESS, the memory pool was created at address

 0x40000 with a size of 8,196 bytes. */

PX5 RTOS

284

px5_pthread_memorypool_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_memorypool_destroy(pthread_memorypool_t *

 memorypool_handle);

Description:

This pthreads+ service destroys the previously created memory pool specified
by memorypool_handle. If the memory pool has any suspended threads
waiting for memory, an error is returned.

API Parameters:

memorypool_handle Handle of the memory pool to destroy.

Return Codes:

PX5_SUCCESS (0) Successful memory pool destruction.
EINVAL Invalid memory pool handle.
EBUSY A thread currently is suspended on the memory

pool.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

285

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypool_create

Small Example:

#include <pthread.h>

/* Memory pool handle. */

pthread_memorypool_t my_memorypool_handle;

int status;

 /* Destroy the memory pool referenced by

 “my_memorypool_handle”. */

 status = px5_pthread_memorypool_destroy(&my_memorypool_handle);

 /* If status is PX5_SUCCESS, the memory pool was destroyed. */

PX5 RTOS

286

px5_pthread_memorypool_free

C Prototype:

#include <pthread.h>

int px5_pthread_memorypool_free(void * memory_to_release);

Description:

This pthreads+ service releases the previously allocated memory back to the
memory pool it was allocated from. Any threads that are suspended on the
memory pool that are waiting for this memory are resumend.

API Parameters:

memory_to_release Pointer to previously allocated memory.

Return Codes:

PX5_SUCCESS (0) Successful memory release.
EINVAL Invalid memory pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for memory
from the associated memory pool, no preemption takes place.

PREEMPTION. If a higher-priority thread was waiting for this
amount of memory, it is resumed, and preemption will occur.

PX5 RTOS

287

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypool_allocate

Small Example:

#include <pthread.h>

/* Allocated memory pointer. */

void * my_memory_pointer;

int staus;

 /* Release the memory pointed to by “my_memory_pointer.” */

 status = px5_pthread_memorypool_free(my_memory_pointer);

 /* If status is PX5_SUCCESS, the memory was released. */

PX5 RTOS

288

px5_pthread_memorypool_tryallocate

C Prototype:

#include <pthread.h>

int px5_pthread_memorypool_tryallocate(pthread_memorypool_t *

 memorypool_handle, void ** allocated_memory,

 size_t request_size);

Description:

This pthreads+ service attempts to allocate memory from the specified
memory pool. If there is not enough memory in the pool, an error is returned.

The memory in the memory pool is managed as a linked-list.
The number of fragments in this linked-list is unknown and can
vary over time. Hence, the processing time for allocation is
undeterministic and therefore this API should not be used in
hard real-time situations.

API Parameters:

memorypool_handle Handle of the memory pool.

allocated_memory Destination pointer to return the allocated

memory.

request_size Number of bytes requested.

Return Codes:

PX5_SUCCESS (0) Successful memory allocation.
EINVAL Invalid memory pool handle pointer, allocated

memory destination pointer, or reqested size.
ENOMEM Not enough free memory to satisfy request.

PX5 RTOS

289

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption takes place with this API.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypool_allocate

Small Example:

#include <pthread.h>

/* Memory pool handle and pointer for allocated memory. */

pthread_memorypool_t my_memorypool_handle;

void * allocated_memory;

int status;

 /* Attempt to allocate 100 bytes from “my_memorypool_handle.” */

 status = px5_pthread_memorypool_tryallocate(&my_memorypool_handle,

 &allocated_memory, 100);

 /* If status is PX5_SUCCESS, a pointer to the allocated memory is

 in “allocated_memory.” */

PX5 RTOS

290

px5_pthread_memorypoolattr_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_destroy(pthread_memorypoolattr_t *

 memorypool_attributes);

Description:

This pthreads+ service destroys the previously created memory pool attributes
structure pointed to by memorypool_attributes. Once destroyed, the memory
pool attributes structure cannot be used again unless it is recreated.

API Parameters:

memorypool_attributes Pointer to the memory pool attributes to

 destroy.

Return Codes:

PX5_SUCCESS (0) Successful memory pool attributes destroy.
EINVAL Invalid memory pool attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

291

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_init

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

int status;

 /* Destroy the memory pool attributes referenced by

 “my_memorypool_attributes”. */

 status = px5_pthread_memorypoolattr_destroy(

 &my_memorypool_attributes);

 /* If status is PX5_SUCCESS, the memory pool attributes structure

 was destroyed. */

PX5 RTOS

292

px5_pthread_memorypoolattr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_getcontroladdr(pthread_memorypoolattr_t

 * memorypool_attributes, void ** memorypool_control_address);

Description:

This pthreads+ service returns the previously supplied memory pool control
structure memory address.

API Parameters:

memorypool_attributes Pointer to the memory pool

 attributes.

memorypool_control_address Pointer to the destination for the
 previously supplied memory pool
 control address.

Return Codes:

PX5_SUCCESS (0) Successful memory pool attributes control
address retrieval.

EINVAL Invalid memory pool attributes, or memory pool
control address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

293

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_setcontroladdr,
px5_pthread_memorypoolattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Memroy pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

void * my_memorypool_control_address;

int status;

 /* Get the memory pool control structure address in the

 attributes structure “my_memorypool_attributes”. */

 status = px5_pthread_memorypoolattr_getcontroladdr(

 &my_memorypool_attributes,

 &my_memorypool_control_address);

 /* If status is PX5_SUCCESS, “my_memorypool_control_address”

 contains the address of the previously supplied event flags

 control memory. */

PX5 RTOS

294

px5_pthread_memorypoolattr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_getcontrolsize(pthread_memorypoolattr_t

 * memorypool_attributes, size_t * memorypool_control_size);

Description:

This pthreads+ service returns the size of the internal memory pool control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_pthread_memorypoolattr_setcontroladdr API.

API Parameters:

memorypool_attributes Pointer to the memory pool attributes.

memorypool_control_size Pointer to the destination for the internal
 memory pool control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal memory pool
control structure size.

EINVAL Invalid memory pool attributes or memory pool
control structure size destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

295

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_setcontroladdr

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

size_t my_memorypool_control_size;

int status;

 /* Get the memory pool control structure memory size. */

 status = px5_pthread_memorypoolattr_getcontrolsize(

 &my_memorypool_attributes, &my_memorypool_control_size);

 /* If status is PX5_SUCCESS, “my_memorypool_control_size”

 contains the size of the internal memory pool

 control structure. */

PX5 RTOS

296

px5_pthread_memorypoolattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_getname(pthread_memorypoolattr_t

 * memorypool_attributes, char ** memorypool_name);

Description:

This pthreads+ service returns the previously supplied memory pool name.

API Parameters:

memorypool_attributes Pointer to the memory pool attributes.

memorypool_name Pointer to the destination for the

 previous memory pool name.

Return Codes:

PX5_SUCCESS (0) Successful memory pool attributes name
retrieval.

EINVAL Invalid memory pool attributes or memory pool
name pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

297

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

char * my_memorypool_name;

int status;

 /* Get the previous memory pool name. */

 status = px5_pthread_memorypoolattr_getname(

 &my_memorypool_attributes, &my_memorypool_name);

 /* If status is PX5_SUCCESS, “my_memorypool_name” contains the

 name previously supplied. */

PX5 RTOS

298

px5_pthread_memorypoolattr_init

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_init(pthread_memorypoolattr_t *

 memorypool_attributes);

Description:

This pthreads+ service initializes the memory pool attributes structure with
default memory pool creation values.

API Parameters:

memorypool_attributes Pointer to the memory pool attributes

 structure to create.

Return Codes:

PX5_SUCCESS (0) Successful memory pool attributes structure
creation.

EINVAL Invalid memory pool attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

299

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_destroy

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

int status;

 /* Create the memory pool attributes structure

 “my_memorypool_attributes”. */

 status =

 px5_pthread_memorypoolattr_init(&my_memorypool_attributes);

 /* If status is PX5_SUCCESS, the “my_memorypool_attributes”

 structure is ready for use. */

PX5 RTOS

300

px5_pthread_memorypoolattr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_setcontroladdr(pthread_memorypoolattr_t

 * memorypool_attributes, void * memorypool_control_address,

 size_t memorypool_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS memory pool structure, as specified by the
address contained in the memorypool_control_address parameter. This
memory will subsequently be used for the next memory pool created with this
attribute structure. The size of the memory required for the internal memory
pool control structure can be found via a call to the
px5_pthread_memorypoolattr_getcontrolsize service.

Note that each memory pool created must have its own unique
control structure memory. Hence, the memory pool control
address supplied here is only valid for one
px5_pthread_memorypool_create call.

API Parameters:

memorypool_attributes Pointer to the memory pool

 attributes.

memorypool_control_address Pointer to the supplied memory
 pool control structure memory.

memorypool_control_size Size of memory specified.

Return Codes:

PX5_SUCCESS (0) Successful internal memory pool control address
set.

PX5 RTOS

301

EINVAL Invalid memory pool attributes or memory size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

int status;

 /* Provide the memory for the memory pool control structure in the

 next memory pool create call by placing it’s address in the

 attributes structure “my_memorypool_attributes”. */

 status = pthread_memorypoolattr_setcontroladdr(

 &my_memorypool_attributes, 0x80000, 150);

 /* If status is PX5_SUCCESS, the next memory pool creation using

 these attributes will use memory at address 0x80000 for the

 internal memory pool control structure. */

PX5 RTOS

302

px5_pthread_memorypoolattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_memorypoolattr_setname(pthread_memorypoolattr_t

 * memorypool_attributes, char * memorypool_name);

Description:

This pthreads+ service sets the memory pool name in the specified attribute
structure.

API Parameters:

memorypool_attributes Pointer to the memory pool attributes.

memorypool_name Pointer to the supplied memory pool
 name.

Return Codes:

PX5_SUCCESS (0) Successful memory pool attributes name set.
EINVAL Invalid memory pool attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

303

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_memorypool_*, px5_pthread_memorypoolattr_*,
px5_pthread_memorypoolattr_getname

Small Example:

#include <pthread.h>

/* Memory pool attribute structure. */

pthread_memorypoolattr_t my_memorypool_attributes;

int status;

 /* Set the memory pool name in the memory pool attributes structure

 “my_memorypool_attributes”. */

 status = px5_pthread_memorypoolattr_setname(

 &my_memorypool_attributes, “my_memorypool_name”);

 /* If status is PX5_SUCCESS, “my_memorypool_name” is set in the

 memory pool attribute structure. */

PX5 RTOS

304

px5_pthread_mutexattr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_mutexattr_getcontroladdr(pthread_mutexattr_t

 *mutex_attributes, void ** mutex_control_address);

Description:

This pthreads+ service returns the previously supplied mutex control structure
address.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

mutex_control_address

Pointer to the destination for the previously
supplied mutex control address.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex control
address retrieval.

EINVAL Invalid mutex attributes or mutex control
address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

305

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*,
px5_pthread_mutexattr_setcontroladdr,
px5_pthread_mutexattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

void * my_mutex_control_address;

int status;

 /* Get the mutex control structure address in the mutex

 attributes structure “my_mutex_attributes”. */

 status = px5_pthread_mutexattr_getcontroladdr(&my_mutex_attributes,

 &my_mutex_control_address);

 /* If status is PX5_SUCCESS, “my_mutex_control_address”

 contains the address of the previously supplied mutex

 control memory. */

PX5 RTOS

306

px5_pthread_mutexattr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_mutexattr_getcontrolsize(pthread_mutexattr_t

 *mutex_attributes, size_t * mutex_control_size);

Description:

This pthreads+ service returns the size of the internal mutex control structure.
The main purpose of this API is to inform the application how much memory is
required for the px5_pthread_mutexattr_setcontroladdr API.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

mutex_control_size Pointer to the destination for the internal mutex
control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal mutex control
structure size.

EINVAL Invalid mutex attributes or mutex control
structure size destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

307

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*,
px5_pthread_mutexattr_setcontroladdr,
px5_pthread_mutexattr_getcontroladdr

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

size_t my_mutex_control_size;

int status;

 /* Get the mutex control structure memory size. */

 status = px5_pthread_mutexattr_getcontrolsize(&my_mutex_attributes,

 &my_mutex_control_size);

 /* If status is PX5_SUCCESS, “my_mutex_control_size”

 contains the size of the internal mutex

 control structure. */

PX5 RTOS

308

px5_pthread_mutexattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_mutexattr_getname(pthread_mutexattr_t

 *mutex_attributes, char ** mutex_name);

Description:

This pthreads+ service returns the previously supplied mutex name.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

mutex_name Pointer to the destination for the previous

mutex name.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex name
retrieval.

EINVAL Invalid mutex attributes or mutex name pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

309

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, px5_pthread_mutexattr_setname

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

char * my_mutex_name;

int status;

 /* Get the previous mutex name. */

 status = px5_pthread_mutexattr_getname(&my_mutex_attributes,

 &my_mutex_name);

 /* If status is PX5_SUCCESS, “my_mutex_name” contains the

 name previously supplied. */

PX5 RTOS

310

px5_pthread_mutexattr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_mutexattr_setcontroladdr(pthread_mutexattr_t

 *mutex_attributes, void * mutex_control_address,

 size_t mutex_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS mutex structure, as specified by the
address contained in the mutex_control_address parameter. This memory will
subsequently be used for the next mutex created with this attribute structure.
The size of the memory required for the internal mutex control structure can
be found via a call to the px5_pthread_mutexattr_getcontrolsize service.

Note that each mutex created must have its own unique mutex
control structure memory. Hence, the mutex control memory
supplied here is only valid for one pthread_mutex_init call.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

mutex_control_address

Pointer to the supplied mutex control structure
memory.

mutex_control_size

Size of specified mutex control structure
memory.

Return Codes:

PX5_SUCCESS (0) Successful internal mutex control address set.

PX5 RTOS

311

EINVAL Invalid mutex attributes or internal mutex
control memory size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, pthread_mutexattr_getcontroladdr,
pthread_mutexattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Set the mutex control structure address in the mutex

 attributes structure “my_mutex_attributes”. */

 status = pthread_mutexattr_setcontroladdr(&my_mutex_attributes,

 0x50000, 80);

 /* If status is PX5_SUCCESS, the mutex creation using these

 attributes will use address 0x50000 for the internal mutex

 control structure. */

PX5 RTOS

312

px5_pthread_mutexattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_mutexattr_setname(pthread_mutexattr_t

 *mutex_attributes, char * mutex_name);

Description:

This pthreads+ service sets the mutex name in the specified attribute
structure.

API Parameters:

mutex_attributes Pointer to the mutex attributes.

mutex_name Pointer to the supplied mutex name.

Return Codes:

PX5_SUCCESS (0) Successful mutex attributes mutex name set.
EINVAL Invalid mutex attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

313

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_mutex_*, pthread_mutexattr_*, px5_pthread_mutexattr_getname

Small Example:

#include <pthread.h>

/* Mutex attribute structure. */

pthread_mutexattr_t my_mutex_attributes;

int status;

 /* Set the mutex name in the mutex attributes structure

 “my_mutex_attributes”. */

 status = px5_pthread_mutexattr_setname(&my_mutex_attributes,

 “my_mutex_name”);

 /* If status is PX5_SUCCESS, “my_mutex_name” is set in the

 mutex attribute structure. */

PX5 RTOS

314

px5_pthread_resume

C Prototype:

#include <pthread.h>

int px5_pthread_resume(pthread_t thread_handle);

Description:

This pthread+ service resumes a previously suspended thread. If the specified
thread is not suspended, an error is returned.

API Parameters:

thread_handle Handle of previously suspended thread.

Return Codes:

PX5_SUCCESS (0) Successful thread resumption.
EINVAL Thread handle is not valid.
EBUSY Specified thread is not suspended.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. If the thread resumed is not higher priority, there
is no preemption.

PREEMPTION. If a higher-priority thread is resumed, preemption
will occur.

PX5 RTOS

315

Callable From:

This service is callable from the thread context and from interrupt handlers
(ISRs).

See Also:

px5_pthread_suspend

Small Example:

#include <pthread.h>

pthread_t my_thread_handle;

int status;

 /* Resume the previously suspended thread. */

 status = px5_pthread_resume(my_thread_handle);

 /* If status contains PX5_SUCCESS, the thread is now resumed. */

PX5 RTOS

316

px5_pthread_start

C Prototype:

#include <pthread.h>

int px5_pthread_start(u_long run_time_id, void * memory_start,

 u_long memory_size);

Description:

This pthreads+ service starts the PX5 RTOS. It should be called early in C main.
Once called, all internal data structures are initialized and prepared for
operation. The initialization processing also includes verification of the binding
layer – the processor/compiler specific layer of PX5. If the start process is
successful, the C main function is upscaled into the first thread in the system.

The optional memory_start and memory_size parameters provide
the PX5 RTOS with memory to sequentially allocate from. For
simple applications without object deletion, this memory allocation
scheme is sufficient.

API Parameters:

run_time_id This is a user-supplied run time identification of
this particular execution instance. Ideally, the
value supplied here is generated from a True
Random Number Generator (TRNG) such that it
is unique for each execution of an application via
PX5. Note that this value is an integral
component to the Pointer/Data Verification
(PDV) of PX5.

memory_start Optional pointer to the memory provided by the

application for internal memory allocation by
PX5. This pointer should be aligned to at least
the word size of the underlying processor
architecture. If the
px5_user_memory_manager_override service is
called by the application, the memory_start
pointer may be NULL.

PX5 RTOS

317

memory_size Optional memory size supplied by the
application.

Return Codes:

PX5_SUCCESS (0) Successful PX5 start–C main is now a thread!
EMVSERR System error–invalid processor binding.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. Even though C main is upscaled into the first
thread, there is no actual preemption possible with this service.

Callable From:

This service is only callable once from the C main entry function.

See Also:

pthread_*, pthread_create

Small Example:

#include <pthread.h>

/* Define some memory for PX5. */

unsigned long memory_area[1024];

unsigned long main_thread_counter;

int main(void)

{

int status;

 /* Call the PX5 start function. */

 status = pthread_start(memory_area, sizeof(memory_area));

PX5 RTOS

318

 /* Check completion status. */

 if (status != PX5_SUCCESS)

 {

 printf(“Error starting PX5!\n”);

 exit(1);

 }

 /* When we return, "main" is now the first PX5 thread.

 Simply loop incrementing the counter. */

 while(1)

 {

 /* Increment the main thread's counter. */

 main_thread_counter++;

 }

}

PX5 RTOS

319

px5_pthread_suspend

C Prototype:

#include <pthread.h>

int px5_pthread_suspend(pthread_t thread_handle);

Description:

This pthread+ service suspends the specified thread. If the specified thread is
already suspended, an error is returned.

Care should be taken to avoid suspending threads in critical
execution paths, such as holding needed system resources or in
process of making PX5 RTOS API calls. In general, this API should
be used by the executing thread or on free-running threads.

API Parameters:

thread_handle Handle of thread to suspend.

Return Codes:

PX5_SUCCESS (0) Successful thread suspension.
EINVAL Thread handle is not valid.
EBUSY Specified thread is already suspended.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

NO PREEMPTION. If the thread suspended in not the executing
threasd, there is no preemption.

SUSPENSION. If the currently executing thread calls this service, is is
suspended until another thread calls px5_pthread_resume.

PX5 RTOS

320

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_resume

Small Example:

#include <pthread.h>

int status;

 /* Suspend the the currentl executing thread. */

 status = px5_pthread_suspend(pthread_self());

 /* If status contains PX5_SUCCESS, the current thread was

 suspended. */

PX5 RTOS

321

px5_pthread_tick_sleep

C Prototype:

#include <pthread.h>

int px5_pthread_tick_sleep(tick_t ticks_to_sleep);

Description:

This pthreads+ service suspends the calling thread for the number of timer
ticks specified by ticks_to_sleep. If a value of 0 ticks is supplied, this service
returns immediately, i.e. the calling thread is not suspended.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

ticks_to_sleep This specifies the number of ticks the
calling thread will be suspended for. If a
value of zero is supplied, this service
returns immediately.

Return Codes:

PX5_SUCCESS (0) Successful thread tick sleep.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the number of ticks to sleep is zero, no
preemption takes place.

SUSPENSION. If the number of ticks to sleep is non-zero, the calling
thread is suspended for that amount of ticks.

PX5 RTOS

322

PREEMPTION. After the number of ticks has expired, the calling
thread is resumed and will preempt the currently running thread if it
is higher priority.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sleep, nanosleep, usleep

Small Example:

#include <pthread.h>

unsigned long my_example_thread_counter;

/* Define example thread. */

void * my_example_thread_start(void *arguments)

{

 /* Loop forever incrementing a counter and sleeping for 100

 ticks. */

 while (1)

 {

 /* Increment my example thread’s counter. */

 my_example_thread_counter++;

 /* Sleep for 100 ticks, which is 1 second @10ms tick rate. */

 px5_pthread_tick_sleep(100);

 }

}

PX5 RTOS

323

px5_pthread_ticks_get

C Prototype:

#include <pthread.h>

tick_t px5_pthread_ticks_get(void);

Description:

This pthreads+ service returns the internal tick count, which represents the
number of timer interrupts.

API Parameters:

none

Return Codes:

current tick count

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption takes place as a result of this
service.

PX5 RTOS

324

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticks_set

Small Example:

#include <pthread.h>

unsigned long current_tick_count;

/* Pickup the current tick count. */

current_tick_count = px5_pthread_ticks_get();

PX5 RTOS

325

px5_pthread_ticktimer_create

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimer_create(pthread_ticktimer_t *ticktimer_handle,

 pthread_ticktimerattr_t * attributes,

 void (*expiration_routine)(pthread_ticktimer_t *, void *),

 void *argument, tick_t initial_ticks, tick_t reload_ticks);

Description:

This pthreads+ service creates a ticktimer that calls the specified expiration
routine after the specified number of initial ticks. If there is a non-zero value
supplied for reload, this ticktimer will operate on a periodic basis.

The ticktimer is created in a stopped state. To start the
ticktimer, please call the px5_pthread_ticktimer_start API after
successful creation.

API Parameters:

ticktimer_handle Upon successful completion, returned handle of

the ticktimer.

attributes Optional attributes for the ticktimer creation.

expiration_routine Application routine to call when the ticktimer
expires.

argument Argument pointer that is passed verbatim when

the application expiration routine is called.

initial_ticks Number of initial ticks before expiration. This
value must be non-zero.

reload_ticks Number of ticks for periodic expriation. If this
value is zero, this ticktimer is a one-shot
ticktimer.

PX5 RTOS

326

Return Codes:

PX5_SUCCESS (0) Successful ticktimer creation.
EINVAL Invalid ticktimer handle pointer, expiration

routine, or initial ticks value.
ENOMEM Insufficient memory to create ticktimer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_*, px5_ticktimer_destroy

Small Example:

#include <pthread.h>

/* Ticktimer handle. */

pthread_ticktimer_t my_ticktimer_handle;

int status;

/* Create a ticktimer that first expires after 10 ticks and then

 every 5 ticks thereafter. Upon each expiration, the

 “my_expiration_routine” will be called. */

status = px5_pthread_ticktimer_create(&my_ticktimer_handle,

 my_expiration_routine, NULL, 10, 5);

/* If status is PX5_SUCCESS, the ticktimer was created and is ready

 to be started via px5_pthread_ticktimer_start. */

PX5 RTOS

327

px5_pthread_ticktimer_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimer_destroy(pthread_ticktimer_t

 *ticktimer_handle);

Description:

This pthreads+ service destroys a previously created, but stopped ticktimer.

API Parameters:

ticktimer_handle Handle of the ticktimer to destroy.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer destroy.
EINVAL Invalid ticktimer handle.
EBUSY Ticktimer is not stopped, i.e., still active.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

328

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_*, px5_ticktimer_create

Small Example:

#include <pthread.h>

/* Ticktimer handle. */

pthread_ticktimer_t my_ticktimer_handle;

int status;

/* Destroy the previously created ticktimer “my_ticktimer_handle”. */

status = px5_pthread_ticktimer_destroy(&my_ticktimer_handle);

/* If status is PX5_SUCCESS, the ticktimer was destroyed. */

PX5 RTOS

329

px5_pthread_ticktimer_start

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimer_start(pthread_ticktimer_t *ticktimer_handle);

Description:

This pthreads+ service starts a previously created ticktimer.

API Parameters:

ticktimer_handle Handle of the ticktimer to start.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer start.
EINVAL Invalid ticktimer handle.
EBUSY Ticktimer was already started.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

330

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_*, px5_ticktimer_stop

Small Example:

#include <pthread.h>

/* Ticktimer handle. */

pthread_ticktimer_t my_ticktimer_handle;

int status;

/* Start the previously created ticktimer “my_ticktimer_handle”. */

status = px5_pthread_ticktimer_start(&my_ticktimer_handle);

/* If status is PX5_SUCCESS, the ticktimer was started. */

PX5 RTOS

331

px5_pthread_ticktimer_stop

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimer_stop(pthread_ticktimer_t *ticktimer_handle);

Description:

This pthreads+ service stops a previously created ticktimer. When stopped,
the remaining number of ticks before expiration is saved. If the ticktimer is re-
started, it is restarted with the previous remaining number of ticks.

API Parameters:

ticktimer_handle Handle of the ticktimer to stop.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer stop.
EINVAL Invalid ticktimer handle, or the ticktimer was

already stopped.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

332

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_*, px5_ticktimer_start

Small Example:

#include <pthread.h>

/* Ticktimer handle. */

pthread_ticktimer_t my_ticktimer_handle;

int status;

/* Stop the previously created ticktimer “my_ticktimer_handle”. */

status = px5_pthread_ticktimer_stop(&my_ticktimer_handle);

/* If status is PX5_SUCCESS, the ticktimer was stopped. */

PX5 RTOS

333

px5_pthread_ticktimer_update

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimer_update(pthread_ticktimer_t *ticktimer_handle,

 tick_t initial_ticks, tick_t reload_ticks);

Description:

This pthreads+ service updates the initial ticks and reload ticks of a previously
created but stopped ticktimer

API Parameters:

ticktimer_handle Handle of ticktimer to update.

initial_ticks Updated number of initial ticks before
expiration. This value must be non-zero.

reload_ticks Updated number of ticks for periodic expiration.
If this value is zero, this ticktimer is a one-shot
ticktimer.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer update.
EINVAL Invalid ticktimer handle pointer or new initial

ticks value.
EBUSY Ticktimer is running. It must be stopped to use

this service.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

334

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_*, px5_ticktimer_stop

Small Example:

#include <pthread.h>

/* Ticktimer handle. */

pthread_ticktimer_t my_ticktimer_handle;

int status

/* Update a ticktimer to first expires after 20 ticks and then every 2

 ticks thereafter. */

status = px5_pthread_ticktimer_update(&my_ticktimer_handle, 20, 2);

/* If status is PX5_SUCCESS, the ticktimer was updated with the new

 initial and reload values. */

PX5 RTOS

335

px5_pthread_ticktimerattr_destroy

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_destroy(pthread_ticktimerattr_t *

 ticktimer_attributes);

Description:

This pthreads+ service destroys the previously created ticktimer attributes
structure pointed to by ticktimer_attributes. Once destroyed, the ticktimer
attributes structure cannot be used again unless it is recreated.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes to

 destroy.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer attributes destroy.
EINVAL Invalid ticktimer attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

336

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_init

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

int status;

 /* Destroy the ticktimer attributes referenced by

 “my_ticktimer_attributes”. */

 status = px5_pthread_ticktimerattr_destroy(

 &my_ticktimer_attributes);

 /* If status is PX5_SUCCESS, the ticktimer attributes structure

 was destroyed. */

PX5 RTOS

337

px5_pthread_ticktimerattr_getcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_getcontroladdr(pthread_ticktimerattr_t

 * ticktimer_attributes, void ** ticktimer_control_address);

Description:

This pthreads+ service returns the previously supplied ticktimer control
structure memory address.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes.

ticktimer_control_address

 Pointer to the destination for the
 previously supplied ticktimer
 control address.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer attributes ticktimer control
address retrieval.

EINVAL Invalid ticktimer attributes or ticktimer control
address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

338

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_setcontroladdr,
px5_pthread_ticktimerattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

void * my_ticktimer_control_address;

int status;

 /* Get the ticktimer control structure address in the ticktimer

 attributes structure “my_ticktimer_attributes”. */

 status = px5_pthread_ticktimerattr_getcontroladdr(

 &my_ticktimer_attributes,

 &my_ticktimer_control_address);

 /* If status is PX5_SUCCESS, “my_ticktimer_control_address”

 contains the address of the previously supplied ticktimer

 control memory. */

PX5 RTOS

339

px5_pthread_ticktimerattr_getcontrolsize

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_getcontrolsize(pthread_ticktimerattr_t

 *ticktimer_attributes, size_t * ticktimer_control_size);

Description:

This pthreads+ service returns the size of the internal ticktimer control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_pthread_ticktimerattr_setcontroladdr API.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes.

ticktimer_control_size Pointer to the destination for the internal
 ticktimer control structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal ticktimer control
structure size.

EINVAL Invalid ticktimer attributes or ticktimer control
structure size destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

340

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_setcontroladdr

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

size_t my_ticktimer_control_size;

int status;

 /* Get the ticktimer control structure memory size. */

 status = px5_pthread_ticktimerattr_getcontrolsize(

 &my_ticktimer_attributes, &my_ticktimer_control_size);

 /* If status is PX5_SUCCESS, “my_ticktimer_control_size”

 contains the size of the internal ticktimer

 control structure. */

PX5 RTOS

341

px5_pthread_ticktimerattr_getname

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_getname(pthread_ticktimerattr_t

 *ticktimer_attributes, char ** ticktimer_name);

Description:

This pthreads+ service returns the previously supplied ticktimer name.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes.

ticktimer_name Pointer to the destination for the

 previous ticktimer name.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer attributes ticktimer name
retrieval.

EINVAL Invalid ticktimer attributes or ticktimer name
pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

342

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

char * my_ticktimer_name;

int status;

 /* Get the previous ticktimer name. */

 status = px5_pthread_ticktimerattr_getname(

 &my_ticktimer_attributes, &my_ticktimer_name);

 /* If status is PX5_SUCCESS, “my_ticktimer_name” contains the

 name previously supplied. */

PX5 RTOS

343

px5_pthread_ticktimerattr_init

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_init(pthread_ticktimerattr_t *

 ticktimer_attributes);

Description:

This pthreads+ service initializes the ticktimer attributes structure with default
ticktimer creation values.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes

 structure to create.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer attributes structure
creation.

EINVAL Invalid ticktimer attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

344

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_destroy

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

int status;

 /* Create the ticktimer attributes structure

 “my_ticktimer_attributes”. */

 status = px5_pthread_ticktimerattr_init(&my_ticktimer_attributes);

 /* If status is PX5_SUCCESS, the “my_ticktimer_attributes”

 structure is ready for use. */

PX5 RTOS

345

px5_pthread_ticktimerattr_setcontroladdr

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_setcontroladdr(pthread_ticktimerattr_t

 * ticktimer_attributes, void * ticktimer_control_address,

 size_t ticktimer_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS ticktimer structure, as specified by the
address contained in the ticktimer_control_address parameter. This memory
will subsequently be used for the next ticktimer created with this attribute
structure. The size of the memory required for the internal ticktimer control
structure can be found via a call to the
px5_pthread_ticktimerattr_getcontrolsize service.

Note that each ticktimer created must have its own unique ticktimer
control structure memory. Hence, the ticktimer control address
supplied here is only valid for one px5_pthread_ticktimer_create

 call.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes.

ticktimer_control_address Pointer to the supplied ticktimer
 control structure memory.

ticktimer_control_size Size of memory specified.

Return Codes:

PX5_SUCCESS (0) Successful internal ticktimer control address set.
EINVAL Invalid ticktimer attributes or memory size.

PX5 RTOS

346

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_getcontrolsize

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

int status;

 /* Provide the memory for the ticktimer control structure in the

 next ticktimer create call by placing it’s address in the

 attributes structure “my_ticktimer_attributes”. */

 status = pthread_ticktimerattr_setcontroladdr(

 &my_ticktimer_attributes, 0x60000, 80);

 /* If status is PX5_SUCCESS, the next ticktimer creation using

 these attributes will use memory at address 0x60000 for the

 internal ticktimer control structure. */

PX5 RTOS

347

px5_pthread_ticktimerattr_setname

C Prototype:

#include <pthread.h>

int px5_pthread_ticktimerattr_setname(pthread_ticktimerattr_t

 * ticktimer_attributes, char * ticktimer_name);

Description:

This pthreads+ service sets the ticktimer name in the specified attribute
structure.

API Parameters:

ticktimer_attributes Pointer to the ticktimer attributes.

ticktimer_name Pointer to the supplied ticktimer name.

Return Codes:

PX5_SUCCESS (0) Successful ticktimer attributes ticktimer name
set.

EINVAL Invalid ticktimer attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

348

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_pthread_ticktimer_*, px5_pthread_ticktimerattr_*,
px5_pthread_ticktimerattr_getname

Small Example:

#include <pthread.h>

/* Ticktimer attribute structure. */

pthread_ticktimerattr_t my_ticktimer_attributes;

int status;

 /* Set the ticktimer name in the ticktimer attributes structure

 “my_ticktimer_attributes”. */

 status = px5_pthread_ticktimerattr_setname(

 &my_ticktimer_attributes, “my_ticktimer_name”);

 /* If status is PX5_SUCCESS, “my_ticktimer_name” is set in the

 ticktimer attribute structure. */

PX5 RTOS

349

px5_sem_extend_init

C Prototype:

#include <semaphore.h>

int px5_sem_extend_init(sem_t * semaphore_handle, int pshared,

 unsigned int value, semattr_t * semaphore_attributes);

Description:

This pthreads+ service extension initializes (creates) a semaphore with the
specified initial value and with optional PX5 semaphore attributes. If
successful, the semaphore handle is available for use by the application. This
service is an alternative to the sem_init API, i.e., all semaphore APIs can be
used on the semaphore created with this extended API.

API Parameters:

semaphore_handle Handle of the semaphore to setup.

pshared Process sharing selection - not used by
the PX5 RTOS.

value Initial value of the semaphore.

semaphore_attributes Optional semaphore attributes.

Return Codes:

PX5_SUCCESS (0) Successful semaphore initialization.
PX5_ERROR (-1) Error attempting to initialize the semaphore.

Please use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle or value
exceeds SEM_VALUE_MAX.

 ENOSPC Insufficient memory to create
semaphore.

PX5 RTOS

350

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sem*, sem_destroy, sem_init, px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

/* Semaphore attributes. */

semattr_t my_semaphore_attributes;

int status;

 /* Create the semaphore and setup “my_semaphore_handle” using

 the already initialized semaphore attributes

 “my_semaphore_attributes”. */

 status = px5_sem_extend_init(&my_semaphore_handle, 0, 1,

 &my_semaphore_attributes);

 /* If status is PX5_SUCCESS, the semaphore was created with a value

 of 1 and is ready to use! */

PX5 RTOS

351

px5_semattr_destroy

C Prototype:

#include <semaphore.h>

int px5_semattr_destroy(semttr_t * semaphore_attributes);

Description:

This pthreads+ service destroys the previously created semaphore attributes
structure pointed to by semaphore_attributes. Once destroyed, the
semaphore attributes structure cannot be used again unless it is recreated.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes to
destroy.

Return Codes:

PX5_SUCCESS (0) Successful semaphore attributes destroy.
EINVAL Invalid semaphore attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

352

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semattr_t my_semaphore_attributes;

int status;

 /* Destroy the semaphore attributes referenced by

 “my_semaphore_attributes”. */

 status = px5_semattr_destroy(&my_semaphore_attributes);

 /* If status is PX5_SUCCESS, the semaphore attributes

 structure was destroyed. */

PX5 RTOS

353

px5_semattr_getcontroladdr

C Prototype:

#include <semaphore.h>

int px5_semattr_getcontroladdr(semattr_t * semaphore_attributes,

 void ** semaphore_control_address);

Description:

This pthreads+ service returns the previously supplied semaphore control
structure address.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes.

semaphore_control_address

Pointer to the destination for the
previously supplied semaphore control
address.

Return Codes:

PX5_SUCCESS (0) Successful semaphore attributes control address
retrieval.

EINVAL Invalid semaphore attributes or semaphore
control address designation pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

354

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_setcontroladdr,
px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semattr_t my_semaphore_attributes;

void * my_semaphore_control_address;

int status;

 /* Get the semaphore control structure address in the

 semaphore attributes structure “my_semaphore_attributes”. */

 status = px5_semattr_getcontroladdr(&my_semaphore_attributes,

 &my_semaphore_control_address);

 /* If status is PX5_SUCCESS, “my_semaphore_control_address”

 contains the address of the previously supplied semaphore

 control memory. */

PX5 RTOS

355

px5_semattr_getcontrolsize

C Prototype:

#include <semaphore.h>

int px5_semattr_getcontrolsize(semattr_t * semaphore_attributes,

 size_t * semaphore_control_size);

Description:

This pthreads+ service returns the size of the internal semaphore control
structure. The main purpose of this API is to inform the application how much
memory is required for the px5_semattr_setcontroladdr API.

API Parameters:

semaphore_attributes Pointer to the attributes.

semaphore_control_size Pointer to the destination for the
internal semaphore control
structure size.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of internal semaphore
control structure size.

EINVAL Invalid semaphore attributes or invalid
destination for semaphore control structure size.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

PX5 RTOS

356

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_setcontroladdr,
px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore variable attribute structure. */

semattr_t my_semaphore_attributes;

size_t my_semaphore_control_size;

int status;

 /* Get the internal semaphore control structure memory size. */

 status = px5_semattr_getcontrolsize(

 &my_semaphore_attributes,

 &my_semaphore_control_size);

 /* If status is PX5_SUCCESS, “my_semaphore_control_size”

 contains the size of the internal semaphore control

 structure. */

PX5 RTOS

357

px5_semattr_getname

C Prototype:

#include <semaphore.h>

int px5_semattr_getname(semattr_t * semaphore_attributes,

 char ** semaphore_name);

Description:

This pthreads+ service returns the previously supplied semaphore name.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes.

semaphore_name Pointer to the destination for the

previously supplied semaphore name.

Return Codes:

PX5_SUCCESS (0) Successful retrieval of last supplied semaphore
name.

EINVAL Invalid semaphore attributes or name
destination pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

358

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_setname,
px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semttr_t my_semaphore_attributes;

char * my_semaphore_name;

int status;

 /* Get the last supplied semaphore name. */

 status = px5_semattr_getname(&my_semaphore_attributes,

 &my_semaphore_name);

 /* If status is PX5_SUCCESS, “my_semaphore_name” contains the

 name previously supplied. */

PX5 RTOS

359

px5_semattr_init

C Prototype:

#include <semaphore.h>

int px5_semattr_init(semattr_t * semaphore_attributes);

Description:

This pthreads+ service initializes the semaphore attributes structure with
default semaphore variable creation values. Note that semaphore attributes
are used only by the px5_sem_extend_init API.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes
 structure to create.

Return Codes:

PX5_SUCCESS (0) Successful semaphore attributes structure
creation.

EINVAL Invalid semaphore attributes pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

360

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_destroy, px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semattr_t my_semaphore_attributes;

int status;

 /* Create the semaphore attributes structure

 “my_semaphore_attributes”. */

 status = px5_semattr_init(&my_semaphore_attributes);

 /* If status is PX5_SUCCESS, the “my_semaphore_attributes”

 structure is ready for use. */

PX5 RTOS

361

px5_semattr_setcontroladdr

C Prototype:

#include <semaphore.h>

int px5_semattr_setcontroladdr(semattr_t * semaphore_attributes,

 void * semaphore_control_address,

 size_t semaphore_control_size);

Description:

This pthreads+ service provides a mechanism for the user to provide the
memory for the internal PX5 RTOS semaphore structure, as specified by the
address contained in the semaphore_control_address parameter. This
memory will subsequently be used for the next semaphore created with this
attribute structure. The size of the memory required for the internal
semaphore control structure can be found via a call to the
px5_semattr_getcontrolsize service.

Note that each semaphore created must have its own unique
semaphore control structure memory. Hence, the semaphore
control memory supplied here is only valid for one
px5_sem_extend_init call.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes.

semaphore_control_address

 Pointer to the internal semaphore control
 structure memory.

semaphore_control_size Size of specified semaphore control

 structure memory.

Return Codes:

PX5 RTOS

362

PX5_SUCCESS (0) Successful specification of semaphore structure
memory.

EINVAL Invalid semaphore attributes or invalid size of
semaphore control memory.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_getcontroladdr,
px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semattr_t my_semaphore_attributes;

int status;

 /* Set the semaphore control structure memory address in the

 semaphore attributes structure “my_semaphore_attributes”. */

 status = px5_semattr_setcontroladdr(&my_semaphore_attributes,

 0x70000, 60);

PX5 RTOS

363

px5_semattr_setname

C Prototype:

#include <semaphore.h>

int px5_semattr_setname(semattr_t * semaphore_attributes,

 char * semaphore_name);

Description:

This pthreads+ service sets the semaphore name in the specified attribute
structure.

API Parameters:

semaphore_attributes Pointer to the semaphore attributes.

semaphore_name Pointer to the supplied semaphore name.

Return Codes:

PX5_SUCCESS (0) Successful semaphore name set.
EINVAL Invalid semaphore attributes.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

364

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_sem_extend_init, px5_semattr_init, px5_semattr_getname,
px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore attribute structure. */

semattr_t my_semaphore_attributes;

int status;

 /* Set the semaphore name in the semaphore attributes

 structure “my_semaphore_attributes”. */

 status = px5_semattr_setname(&my_semaphore_attributes,

 “my_semaphore_name”);

 /* If status is PX5_SUCCESS, “my_semaphore_name” is set in the

 semaphore attribute structure. */

PX5 RTOS

365

sched_yield

C Prototype:

#include <sched.h>

int sched_yield(void);

Description:

This service relinquishes control to the next thread of the same priority
currently ready for execution. If there is no other thread of the same priority
ready for execution, this service simply returns a successful status.

API Parameters:

none

Return Codes:

PX5_SUCCESS (0) Successful thread yield.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If no other threads of the same priority are ready
for execution, this service simply returns without any preemption.

PREEMPTION. If there are other threads read for execution at the
same priority level, the other thread(s) will execute before this
service returns.

PX5 RTOS

366

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

px5_ticktimer_sleep, sleep, nanosleep

Small Example:

#include <sched.h>

unsigned long my_first_thread_counter;

unsigned long my_second_thread_counter;

/* Define first thread. */

void * my_first_thread_start(void *arguments)

{

 /* Loop forever incrementing a counter and yielding

 the processor to thread 1. */

 while (1)

 {

 /* Increment my first thread’s counter. */

 my_first_thread_counter++;

 /* Yield to my second thread. */

 sched_yield();

 /* Once sched_yield returns, my second thread has executed. */

 }

}

/* Define my second thread. */

void * my_second_thread_start(void *arguments)

{

 /* Loop forever incrementing a counter and yielding

 the processor to my first thread. */

 while (1)

 {

 /* Increment my second thread’s counter. */

 my_second_thread_counter++;

PX5 RTOS

367

sem_destroy

C Prototype:

#include <semaphore.h>

int sem_destroy(sem_t * semaphore_handle);

Description:

This service destroys the previously created semaphore specified by
semaphore_handle. If there are one or more threads still suspended on this
semaphore, an error is returned.

API Parameters:

semaphore_handle Handle of the semaphore to destroy.

Return Codes:

PX5_SUCCESS (0) Successful semaphore destroy.
PX5_ERROR (-1) Error attempting to destroy semaphore. Please

use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle.
 EBUSY One or more threads are currently

suspended on this semaphore.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. There is no preemption possible with this service.

PX5 RTOS

368

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sem*, sem_init

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

int status;

 /* Destroy the semaphore referenced by “my_semaphore_handle”. */

 status = sem_destroy(&my_semaphore_handle);

 /* If status is PX5_SUCCESS, the semaphore was destroyed. */

PX5 RTOS

369

sem_init

C Prototype:

#include <semaphore.h>

int sem_init(sem_t * semaphore_handle, int pshared,

 unsigned int value);

Description:

This service initializes (creates) a semaphore with the specified initial value. If
successful, the semaphore handle is available for use by the application.

API Parameters:

semaphore_handle Handle of the semaphore to setup.

pshared Process sharing selection - not used by the PX5
RTOS.

value Initial value of the semaphore.

Return Codes:

PX5_SUCCESS (0) Successful semaphore initialization.
PX5_ERROR (-1) Error attempting to initialize the semaphore.

Please use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle or value
exceeds SEM_VALUE_MAX.

 ENOSPC Insufficient memory to create
semaphore.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

370

NO PREEMPTION. There is no preemption possible with this service.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sem*, sem_destroy, px5_sem_extend_init, px5_semattr_*

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

int status;

 /* Create the semaphore and setup “my_semaphore_handle”. */

 status = sem_init(&my_semaphore_handle, 0, 1);

/* If status is PX5_SUCCESS, the semaphore was created with a value

 of 1 and is ready to use! */

PX5 RTOS

371

sem_post

C Prototype:

#include <semaphore.h>

int sem_post(sem_t * semaphore_handle);

Description:

This service posts to the specified semaphore. If one or more threads are
waiting, the first thread waiting is resumed. Otherwise, if no threads are
waiting, the internal semaphore count is incremented by 1.

API Parameters:

semaphore_handle Handle of the semaphore to post.

Return Codes:

PX5_SUCCESS (0) Successful semaphore post.
PX5_ERROR (-1) Error attempting to post to the semaphore.

Please use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle or value
exceeds SEM_VALUE_MAX.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If there are no other threads waiting for the
semaphore, no preemption takes place.

PREEMPTION. If a higher-priority thread was waiting for the
semaphore, when it is given the semaphore, the waiting thread is
resumed, and preemption will occur.

PX5 RTOS

372

Callable From:

This service is callable from the thread context and from interrupt handlers
(ISRs).

See Also:

sem*, sem_wait, sem_trywait

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

int status;

 /* Post to the semaphore “my_semaphore_handle”. */

 status = sem_post(&my_semaphore_handle);

 /* If status is PX5_SUCCESS, the post was made to the semaphore. */

PX5 RTOS

373

sem_trywait

C Prototype:

#include <semaphore.h>

int sem_trywait(sem_t * semaphore_handle);

Description:

If the semaphore is available (count greater than zero), this service
decrements the count and returns success. Otherwise, an error is returned.

API Parameters:

semaphore_handle Handle of the semaphore to try to get.

Return Codes:

PX5_SUCCESS (0) Successful semaphore get.
PX5_ERROR (-1) Error attempting to get the semaphore. Please

use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle.
 EAGAIN Semaphore is not available.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the semaphore was available and ownership
assigned to the calling thread, no preemption takes place.

PX5 RTOS

374

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sem*, sem_wait

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

int status;

 /* Try to get the semaphore “my_semaphore_handle”. */

 status = sem_trywait(&my_semaphore_handle);

 /* If status is PX5_SUCCESS, the semaphore was retrieved. */

PX5 RTOS

375

sem_wait

C Prototype:

#include <semaphore.h>

int sem_wait(sem_t * semaphore_handle);

Description:

If the semaphore is available (count greater than zero), this service
decrements the semaphore count by one and returns success to the caller.
Otherwise, if the semaphore is zero, the calling thread suspends until the
semaphore is available.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

semaphore_handle Handle of the semaphore to get.

Return Codes:

PX5_SUCCESS (0) Successful semaphore get.
PX5_ERROR (-1) Error attempting to get the semaphore. Please

use errno to retrieve the exact error:

 EINVAL Invalid semaphore handle.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. If the semaphore is available, no preemption
takes place.

PX5 RTOS

376

SUSPENSION. If the semaphore is not available (count is zero), the
calling thread is suspended until the semaphore becomes available
via sem_post.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sem*, sem_trywait, sem_post

Small Example:

#include <semaphore.h>

/* Semaphore handle. */

sem_t my_semaphore_handle;

int status;

 /* Get the semaphore “my_semaphore_handle”. */

 status = sem_wait(&my_semaphore_handle);

 /* If status is PX5_SUCCESS, the semaphore was retrieved. */

PX5 RTOS

377

sigaction

C Prototype:

#include <signal.h>

int sigaction(int signal_number, struct sigaction * new_handler,

 struct sigaction * previous_handler);

Description:

This service sets up the signal handler for the specified signal number. If the
previous handler pointer is non-NULL, the information for the previous signal
handler is returned as well.

Signal handlers are only invoked if the corresponding signal is
unmasked by the thread receiving the raised signal. A signal handler
should be setup via sigaction before any signal is enabled.

API Parameters:

signal_number Signal number to set up handler for.

new_handler Pointer to signal action structure that contains
signal information, including the handler. This
pointer is NULL if handler is being removed.

previous_handler Optional pointer to structure to store the
previous handler information. If the previous
handler information is not wanted, this value is
NULL.

Return Codes:

PX5_SUCCESS (0) Successful signal handler setup.
PX5_ERROR (-1) Error attempting to set up signal handler. Please

use errno to retrieve the exact error:

 EINVAL Invalid signal number or invalid
new signal handler.

PX5 RTOS

378

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only sets up the signal handler, so no
preemption is possible.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, pthread_kill, pthread_sigmask, sigwait

Small Example:

#include <signal.h>

struct sigaction my_signal_handler_request;

struct sigaction previous_signal_handler;

int my_signal_handler_count;

 /* My signal handler. */

 void my_signal_handler(int signal)

 {

 /* Signal will be equal to SIGUSR1 */

 /* Increment signal count. */

 my_signal_handler_count++;

 }

 /* Later in the thread processing… */

 /* Setup the signal handler for SIGUSR1. */

 my_signal_handler_request.signal_handler = my_signal_handler;

 status = sigaction(SIGUSR1, &my_signal_handler_request,

 &prevous_signal_handler);

PX5 RTOS

379

 /* If status is PX5_SUCCESS (0), “my_signal_handler” is set up for

 SIGUSR1. Any pthread_kill request to a thread with SIGUSR1

 enabled will result in a call to “my_signal_handler”. */

PX5 RTOS

380

sigaddset

C Prototype:

#include <signal.h>

int sigaddset(sigset_t * signal_set, int signal_number);

Description:

This service adds the specified signal_number to the set of signals.

API Parameters:

signal_set Bit map of signals (signal set).

signal_number Number of signal to add to the signal set.

Return Codes:

PX5_SUCCESS (0) Successful signal add to set.
PX5_ERROR (-1) Error attempting to add signal to set . Please use

errno to retrieve the exact error:

 EINVAL Invalid signal number or invalid
signal set pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only adds the signal number in the
signal set, so no preemption is possible.

PX5 RTOS

381

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigdelset, sigemptyset, sigfillset

Small Example:

#include <signal.h>

sigset_t my_signal_set;

 /* Add the SIGUSR1 signal to “my_signal_set”. */

 status = sigaddset(&my_signal_set, SIGUSR1);

 /* If status is PX5_SUCCESS (0), SIGUSR1 has been added to the signal

 set in “my_signal_set”. */

PX5 RTOS

382

sigdelset

C Prototype:

#include <signal.h>

int sigdelset(sigset_t * signal_set, int signal_number);

Description:

This service deletes the specified signal_number from the set of signals.

API Parameters:

signal_set Bit map of signals (signal set).

signal_number Number of signal to remove from the signal set.

Return Codes:

PX5_SUCCESS (0) Successful signal removal from set.
PX5_ERROR (-1) Error attempting to remove signal from set .

Please use errno to retrieve the exact error:

 EINVAL Invalid signal number or invalid
signal set pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only deletes the signal number in the
signal set, so no preemption is possible.

PX5 RTOS

383

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigaddset, sigemptyset, sigfillset

Small Example:

#include <signal.h>

sigset_t my_signal_set;

 /* Remove the SIGUSR1 signal from “my_signal_set”. */

 status = sigdelset(&my_signal_set, SIGUSR1);

/* If status is PX5_SUCCESS, SIGUSR1 has been removed from the signal

 set “my_signal_set”. */

PX5 RTOS

384

sigemptyset

C Prototype:

#include <signal.h>

int sigemptyset(sigset_t * signal_set);

Description:

This service removes all signals from the specified set of signals.

API Parameters:

signal_set Bit map of signals (signal set).

Return Codes:

PX5_SUCCESS (0) Successful signal removal of all signals from set.
PX5_ERROR (-1) Error attempting to remove all signals from set .

Please use errno to retrieve the exact error:

 EINVAL Invalid signal set pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only removes all signals from the
signal set, so no preemption is possible.

PX5 RTOS

385

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigdelset, sigaddset, sigfillset

Small Example:

#include <signal.h>

sigset_t my_signal_set;

 /* Remove all signals from “my_signal_set”. */

 status = sigemptyset(&my_signal_set);

/* If status is PX5_SUCCESS (0), all signals have been removed from

 the signal set “my_signal_set”. */

PX5 RTOS

386

sigfillset

C Prototype:

#include <signal.h>

int sigfillset(sigset_t * signal_set);

Description:

This service sets all signals in the specified set of signals.

API Parameters:

signal_set Bit map of signals (signal set).

Return Codes:

PX5_SUCCESS (0) Successful signal setting of all signals in set.
PX5_ERROR (-1) Error attempting to set all signals in set . Please

use errno to retrieve the exact error:

 EINVAL Invalid signal set pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only sets signals in the signal set, so
no preemption is possible.

PX5 RTOS

387

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigdelset, sigemptyset, sigaddset

Small Example:

#include <signal.h>

sigset_t my_signal_set;

 /* Set all signals in “my_signal_set”. */

 status = sigfillset(&my_signal_set);

/* If status is PX5_SUCCESS (0), all signals have been set in

“my_signal_set”. */

PX5 RTOS

388

sigismember

C Prototype:

#include <signal.h>

int sigismember(sigset_t * signal_set, int signal_number);

Description:

This service determines if signal_number is part of the specified signal set.

API Parameters:

signal_set Bit map of signals (signal set).

signal_number Signal number to check for in the set.

Return Codes:

1 Signal is part of the set
0 Signal is not part of the set.
PX5_ERROR (-1) Error attempting to set all signals in set . Please

use errno to retrieve the exact error:

 EINVAL Invalid signal set pointer or invalid
signal number.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only checks for a signal in the signal
set, so no preemption is possible.

PX5 RTOS

389

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigaddset, sigdelset, sigemptyset, sigfillset, sigpending

Small Example:

#include <signal.h>

sigset_t my_signal_set;

 /* Check if SIGUSR1 is in the “my_signal_set” signal set. */

 status = sigismember(&my_signal_set, SIGUSR1);

/* If status is 0, SIGUSR1 is not in the “my_signal_set” signal

 set. */

PX5 RTOS

390

sigpending

C Prototype:

#include <signal.h>

int sigpending(sigset_t * pending_signals);

Description:

This service retrieves the pending signals for the calling thread.

API Parameters:

pending_signals Pointer to destination for the pending signals of
the calling thread.

Return Codes:

PX5_SUCCESS (0) Successful pending signal retrieval.
PX5_ERROR (-1) Error attempting to get the pending signals.

Please use errno to retrieve the exact error:

 EINVAL Invalid pending signal pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. This service only retrieves the pending signals of
the calling thread, so no preemption is possible.

PX5 RTOS

391

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigaddset, sigdelset, sigemptyset, sigfillset

Small Example:

#include <signal.h>

sigset_t my_pending_signals;

 /* Retrieve the pending signals for the calling thread. */

 status = sigpending(&my_pending_signal);

/* If status is PX5_SUCCESS (0), the pending signals for the calling

 thread can be found in “my_pending_signals”. */

PX5 RTOS

392

sigtimedwait

C Prototype:

#include <signal.h>

int sigtimedwait(const sigset_t * signals, siginfo_t * signal_info,

 const struct timespec * timeout);

Description:

This service suspends the calling thread until a signal in the specified signal set
is raised. If the signal is already pending, this service returns immediately with
the corresponding signal number. If none of the signals in the set are pending,
this service suspends the calling thread until a signal in the set is raised or until
the specified timeout occurs.

All signals specified in the signal set must be masked in order to
synchronously wait for them.

API Parameters:

signals Bit map of signals (signal set) to wait for.

signal_info Optional pointer to structure containing signal

information.

timeout Maximum time this service will wait before
returning.

See Also:

sig*, sigwait, sigwaitinfo

PX5 RTOS

393

Return Codes:

Positive Number Signal raised.
PX5_ERROR (-1) Error attempting to wait for signal. Please use

errno to retrieve the exact error:

 EINVAL Invalid signal set or timeout value.
 EAGAIN Timeout occurred before signal

was raised.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. A signal is already pending in the specified signal
set, and this service returns immediately. No preemption takes
place.

SUSPENSION. If no signal in the specified signal set is pending, this
service suspends the calling thread until a signal is raised via
pthread_kill or the timeout occurs.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigwait, sigwaitinfo, pthread_kill

Small Example:

#include <signal.h>

int signal_received;

struct timespec my_timeout;

sigset_t my_signals;

PX5 RTOS

394

 /* Setup the signal set to specify SIGUSR1 signal. */

 sigemptyset(&my_signals);

 sigaddset(&my_signals, SIGUSR1);

 /* Setup timeout for 1 second. */

 my_timeout.tv_sec = 1;

 my_timeout.tv_nsec = 0;

 /* Wait for SIGUSR1 signals. */

 signal_received = sigtimedwait(&my_signal, NULL, &my_timeout);

 /* If signal_received is SIGUSR1 the service was successful. */

PX5 RTOS

395

sigwait

C Prototype:

#include <signal.h>

int sigwait(const sigset_t * signals, int * signal_number);

Description:

This service suspends the calling thread until a signal in the specified signal set
is raised. If the signal is already pending, this service returns immediately with
the corresponding signal number. If none of the signals in the specified set are
pending, this service suspends the calling thread until a signal in the set is
raised.

All signals specified in the signal set must be masked in order to
synchronously wait for them.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

signals Bit map of signals (signal set) to wait for.

signal_number Pointer to return the signal within the specified
set that was raised.

Return Codes:

PX5_SUCCESS (0) Successful completion.
EINVAL Error, invalid signal set, or signal number return
 pointer.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

PX5 RTOS

396

NO PREEMPTION. A signal is already pending in the specified signal
set, and this service returns immediately. No preemption takes
place.

SUSPENSION. If no signal in the specified signal set is pending, this
service suspends the calling thread until a signal is raised via
pthread_kill.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigtimedwait, sigwaitinfo, pthread_kill

Small Example:

#include <signal.h>

int signal_raised;

int status;

sigset_t my_signals;

 /* Setup the signal set to specify SIGUSR1 signal. */

 sigemptyset(&my_signals);

 sigaddset(&my_signals, SIGUSR1);

 /* Wait for SIGUSR1 signals. */

 status = sigwait(&my_signal, &my_signal_number);

 /* If status is PX5_SUCCESS (0), my_signal_number contains

 SIGUSR1. */

PX5 RTOS

397

sigwaitinfo

C Prototype:

#include <semaphore.h>

int sigwaitinfo(const sigset_t * signals, siginfo_t * signal_info);

Description:

This service suspends the calling thread until a signal in the specified signal set
is raised. If the signal is already pending, this service returns immediately with
the corresponding signal number (and additional signal information in
signal_info). If none of the signals in the specified set are pending, this service
suspends the calling thread until a signal in the set is raised.

All signals specified in the signal set must be masked in order to
synchronously wait for them.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

signals Bit map of signals (signal set) to wait for.

signal_info Optional pointer to structure containing signal
information.

Return Codes:

Positive Number Signal raised.
PX5_ERROR (-1) Error attempting to wait for signal. Please use

errno to retrieve the exact error:

 EINVAL Invalid signal set.

Real-time Scenarios:

PX5 RTOS

398

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. A signal is already pending in the specified signal
set, and this service returns immediately. No preemption takes
place.

SUSPENSION. If no signal in the specified signal set is pending, this
service suspends the calling thread until a signal is raised via
pthread_kill.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

sig*, sigwait, sigtimedwait, pthread_kill

Small Example:

#include <signal.h>

int signal_received;

siginfo_t my_signal_info;

sigset_t my_signals;

 /* Setup the signal set to specify SIGUSR1 signal. */

 sigemptyset(&my_signals);

 sigaddset(&my_signals, SIGUSR1);

 /* Wait for SIGUSR1 signals. */

 signal_received = sigwaitinfo(&my_signal, &my_signal_info);

 /* If signal_received is SIGUSR1 the service was successful and

 my_signal_info.si_signo also contains SIGUSR1. */

PX5 RTOS

399

sleep

C Prototype:

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Description:

This service causes the calling thread to suspend for the number of seconds
specified in seconds. If an unmasked signal is sent to the thread while
sleeping, the thread is resumed, and the amount of remaining seconds is
returned.

Sleep requests are rounded up to the next second.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

seconds The number of seconds to sleep.

Return Codes:

0 Successful sleep – no remaining seconds.

Positive number Sleep was interrupted by a signal sent to this
thread. This value represents the number of
seconds left to sleep.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

SUSPENSION. The calling thread is suspended until the time specified
has lapsed or until another thread sends a signal to this thread.

PX5 RTOS

400

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

nanosleep

Small Example:

#include “unistd.h”

unsigned int remaining_seconds;

 /* Sleep for 5 second. */

 remaining_seconds = sleep(5);

 /* If “remaining_seconds” is 0, the calling thread slept for

 5 seconds. */

PX5 RTOS

401

time

C Prototype:

#include <pthread.h>

time_t time(time_t * return_seconds);

Description:

This service returns the current number of seconds. If a non-null value for
return_seconds is provide, the current number of seconds is also placed in the
destination pointed to by return_seconds.

API Parameters:

return_seconds If non-null, pointer to the destination of where

to store the current seconds (in addition to
current seconds returned by the function).

Return Value:

current seconds Current seconds.

Real-time Scenarios:

Upon the successful completion of this service, the following real-time
scenarios are possible:

NO PREEMPTION. No preemption takes place as a result of this
service.,

PX5 RTOS

402

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

pthread_ticks_get

Small Example:

#include <pthread.h>

/* Variable to store the current seconds. */

time_t my_current_seconds;

 /* Get the current seconds. */

 my_current_seconds = time(NULL);

 /* At this point, my_current_seconds contains the current

 seconds. */

PX5 RTOS

403

usleep

C Prototype:

#include <unistd.h>

int usleep(useconds_t microseconds);

Description:

This service causes the calling thread to suspend for the amount of time
specified in microseconds. If an unmasked signal is sent to the thread while
sleeping, the thread is resumed, and an error is returned.

usleep requests are rounded up to the next timer tick that is evenly
divisible by the timer resolution.

This API is a cancellation point, meaning that if a cancellation is
pending, it will be detected and executed by this API.

API Parameters:

microsecond The amount of time in microseconds to sleep.

Return Codes:

PX5_SUCCESS (0) Successful usleep.
PX5_ERROR (-1) Error attempting to usleep. Please use errno to

retrieve the exact error:

 EINTR usleep was interrupted by a
signal.

Real-time Scenarios:

Upon the successful execution of this service, the following real-time scenarios
are possible:

PX5 RTOS

404

SUSPENSION. The calling thread is suspended until the time specified
has lapsed or until another thread sends a signal to this thread.

Callable From:

This service is only callable from the thread context, i.e., it may not be called
from an interrupt handler.

See Also:

nanosleep, px5_pthread_tick_sleep, sleep

Small Example:

#include <unistd.h>

int status;

 /* Sleep for 1 second. */

 status = usleep(1000000);

 /* If status contains PX5_SUCCESS (0), the calling thread slept for

 1 second. */

PX5 RTOS

405

Index

API definitions

clock_getres 38, 39, 41, 43

clock_gettime 39, 40, 41, 43, 61, 64, 99

clock_settime 39, 41, 42, 43

mq_close 31, 44, 45, 49, 167

mq_getattr 31, 46, 47, 49, 58, 167

mq_open ... 31, 45, 47, 48, 50, 52, 55, 58,

60, 63, 167

mq_receive 31, 45, 51, 53, 55, 60, 63

mq_send 31, 45, 52, 54, 56, 60, 63

mq_setattr 31, 47, 49, 57, 58, 167

mq_timedreceive 31, 52, 55, 59, 60, 61, 63

mq_timedsend 31, 55, 62, 64

nanosleep 65, 66, 322, 366, 400, 404

pthread_attr_destroy 68, 69

pthread_attr_getdetachstate 70, 71

pthread_attr_getstackaddr 72, 73

pthread_attr_getstacksize 74, 75

pthread_attr_init 76, 77

pthread_attr_setdetachstate 78, 79

pthread_attr_setstackaddr ... 26, 72, 80, 81

pthread_attr_setstacksize 74, 82, 83

pthread_cancel ... 84, 85, 87, 89, 112, 115,

119, 153, 155, 160, 315, 320

pthread_cleanup_pop . 85, 86, 87, 89, 153,

155, 160

pthread_cleanup_push 85, 87, 88, 89, 153,

155, 160

pthread_cond_broadcast 30, 90, 91, 97

pthread_cond_destroy 30, 92, 93, 95

pthread_cond_init 30, 91, 93, 94, 95, 104,

106, 108, 110, 208

pthread_cond_signal 30, 91, 96, 97, 99,

102

pthread_cond_timedwait 98, 100, 102

pthread_cond_wait 30, 91, 97, 99, 101,

102

pthread_condattr_destroy 30, 103, 104

pthread_condattr_getpshared 30, 105, 106

pthread_condattr_init 30, 107, 108

pthread_condattr_setpshared . 30, 109, 110

pthread_create 4, 6, 69, 71, 73, 75, 76, 77,

79, 80, 81, 83, 85, 87, 89, 111, 113, 115,

153, 155, 160, 194, 272, 315, 317, 320

pthread_detach .. 111, 112, 114, 115, 119,

120, 121, 314, 315, 319, 320

pthread_equal 116, 117, 151

pthread_exit . 29, 111, 112, 115, 117, 118,

119, 121, 159, 315, 320

pthread_join111, 112, 115, 118, 119, 120,

121, 315, 320

pthread_kill... 33, 122, 123, 157, 378, 379,

393, 396, 398

pthread_mutex_destroy .. 32, 124, 125, 127

pthread_mutex_init 32, 126, 127, 310

pthread_mutex_lock 25, 32, 128, 129, 130,

131, 133

pthread_mutex_trylock ... 32, 130, 131, 133

pthread_mutex_unlock .. 32, 128, 129, 131,

132, 133

pthread_mutexattr_destroy ... 32, 134, 135,

143

pthread_mutexattr_getprotocol ...136, 137,

145

pthread_mutexattr_getpshared32, 138,

139

pthread_mutexattr_gettype .. 140, 141, 149

pthread_mutexattr_init.. 32, 135, 139, 142,

143, 147

pthread_mutexattr_setprotocol137, 144,

145

pthread_mutexattr_setpshared32, 146,

147

pthread_mutexattr_settype .. 141, 148, 149

pthread_self..................... 4, 117, 150, 151

pthread_setcancelstate 84, 85, 87, 89, 111,

152, 153, 155, 160

pthread_setcanceltype . 84, 85, 87, 89, 111,

153, 154, 155, 160

pthread_sigmask 33, 123, 156, 158, 378

pthread_testcancel 85, 87, 89, 153, 155,

159, 160

px5_mq_extend_open ... 49, 165, 167, 169,

171, 173, 175, 177, 178, 179, 180, 181,

182, 183, 269

px5_mq_extendattr_destroy .. 31, 168, 169,

179

px5_mq_extendattr_getcontroladdr31, 170,

171

px5_mq_extendattr_getcontrolsize .31, 172,

173, 181

px5_mq_extendattr_getqueueaddr .31, 174,

175, 259, 260

px5_mq_extendattr_getqueuesize ..31, 176,

177, 261, 262

PX5 RTOS

406

px5_mq_extendattr_init 31, 169, 171, 173,

175, 177, 178, 179, 183

px5_mq_extendattr_setcontroladdr . 26, 31,

172, 173, 180, 181

px5_mq_extendattr_setqueueaddr .. 26, 31,

175, 177, 182, 183, 269, 270

px5_pthread_attr_getcontroladdr 184, 185,

195

px5_pthread_attr_getcontrolsize . 186, 187,

194, 195

px5_pthread_attr_getname 188, 189

px5_pthread_attr_getpriority 190, 191, 199

px5_pthread_attr_gettimeslice 192, 193,

201

px5_pthread_attr_setcontroladdr .. 26, 184,

186, 194, 195

px5_pthread_attr_setname 196, 197

px5_pthread_attr_setpriority190, 191, 198,

199

px5_pthread_attr_settimeslice 192, 200,

201

px5_pthread_condattr_getcontroladdr . 202,

203, 205

px5_pthread_condattr_getcontrolsize .. 203,

204, 205, 208

px5_pthread_condattr_getname .. 206, 207,

211

px5_pthread_condattr_setcontroladdr ... 26,

203, 204, 205, 208

px5_pthread_condattr_setname .. 207, 210,

211

px5_pthread_event_flags_clear 34, 35, 212,

213

px5_pthread_event_flags_create 34, 35,

214, 215, 217, 234, 238, 239, 241, 265

px5_pthread_event_flags_destroy.... 34, 35,

215, 216, 217, 239, 240, 241

px5_pthread_event_flags_set 213, 218,

219, 223, 242, 243, 244, 245, 246, 247,

248, 249

px5_pthread_event_flags_trywait 34, 35,

220, 221

px5_pthread_event_flags_wait 34, 35, 219,

221, 222, 223, 243, 245, 247, 249

px5_pthread_event_flagsattr_destroy .. 224,

225, 233, 251, 252, 264

px5_pthread_event_flagsattr_getcontroladd

r 226, 227, 253, 254

px5_pthread_event_flagsattr_getcontrolsize

 . 227, 228, 229, 234, 235, 254, 255, 256,

265, 266

px5_pthread_event_flagsattr_getname 230,

231, 237, 257, 258, 268

px5_pthread_event_flagsattr_init .225, 232,

233, 252, 263, 264

px5_pthread_event_flagsattr_setcontroladd

r .. 227, 228, 229, 234, 254, 255, 256, 265

px5_pthread_event_flagsattr_setname 236,

237, 267, 268

px5_pthread_information_get 271, 273

px5_pthread_memory_manager_get ... 275,

276, 277, 279

px5_pthread_memory_manager_set 275,

277, 278, 279

px5_pthread_mutexattr_getcontroladdr304,

305, 307

px5_pthread_mutexattr_getcontrolsize 305,

306, 307, 310

px5_pthread_mutexattr_getname 308, 309,

313

px5_pthread_mutexattr_setcontroladdr . 26,

305, 306, 307, 310

px5_pthread_mutexattr_setname .309, 312,

313

px5_pthread_start 8, 9, 18, 21, 26, 274,

275, 276, 277, 279, 316

px5_pthread_tick_sleep ... 36, 66, 321, 322,

404

px5_pthread_ticks_get 36, 323, 324

px5_pthread_ticktimer_create 36, 325, 326,

345

px5_pthread_ticktimer_destroy36, 327,

328

px5_pthread_ticktimer_start .. 36, 325, 326,

329, 330

px5_pthread_ticktimer_stop ... 36, 331, 332

px5_pthread_ticktimer_update 36, 333, 334

px5_pthread_ticktimerattr_destroy 36, 335,

336, 344

px5_pthread_ticktimerattr_getcontroladdr

 ... 36, 337, 338

px5_pthread_ticktimerattr_getcontrolsize

 36, 338, 339, 340, 345, 346

px5_pthread_ticktimerattr_getname 341,

342, 348

px5_pthread_ticktimerattr_init36, 336,

343, 344

px5_pthread_ticktimerattr_setcontroladdr

 26, 338, 339, 340, 345

px5_pthread_ticktimerattr_setname 36,

347, 348

PX5 RTOS

407

px5_sem_extend_init 32, 349, 350, 352,

354, 356, 358, 359, 360, 361, 362, 364,

370

px5_semattr_destroy 32, 351, 352, 360

px5_semattr_getcontroladdr . 32, 353, 354,

362

px5_semattr_getcontrolsize ... 32, 355, 356,

361

px5_semattr_getname ... 33, 357, 358, 364

px5_semattr_init... 33, 352, 354, 356, 358,

359, 360, 362, 364

px5_semattr_setcontroladdr 26, 33, 354,

355, 356, 361, 362

px5_semattr_setname 33, 358, 363, 364

sched_yield 4, 365, 366

sem_destroy 32, 350, 367, 368, 370

sem_init 32, 349, 350, 368, 369, 370

sem_post 32, 371, 372, 376

sem_trywait 32, 372, 373, 374, 376

sem_wait 32, 372, 374, 375, 376

sigaction 33, 123, 157, 377, 378

sigaddset 33, 380, 381, 383, 385, 387,

389, 391, 394, 396, 398

sigdelset33, 381, 382, 383, 385, 387, 389,

391

sigemptyset .. 33, 381, 383, 384, 385, 387,

389, 391, 394, 396, 398

sigfillset 33, 158, 381, 383, 385, 386, 387,

389, 391

sigismember 33, 388, 389

sigpending 33, 389, 390, 391

sigtimedwait 33, 392, 394, 396, 398

sigwait . 33, 123, 157, 378, 392, 393, 395,

396, 398

sigwaitinfo..... 33, 392, 393, 396, 397, 398

sleep 65, 66, 243, 245, 319, 321, 322,

366, 399, 400, 403, 404

usleep 66, 322, 403, 404

Application Best Practices 19

bullet 6, 37

Central Error Handling 27

clock_getres 38, 39, 41, 43

clock_gettime . 39, 40, 41, 43, 61, 64, 99

clock_settime 39, 41, 42, 43

Composition 25

Condition Variables 30

Configuration Options for the PX5 RTOS . 9

Default Verification Code 21

Enabling PDV 22

Event Flags 34, 35

Functional Overview....................... vii, 24

Hardware Safety & Security Features 16

History of POSIX pthreads vii, 6

Important Information Verified 22

Installation and Use of PX5 RTOS vii, 8

Internal Memory Management 25

Memory Management 17

Message Queues 30

mq_close 31, 44, 45, 49, 167

mq_getattr 31, 46, 47, 49, 58, 167

mq_open 31, 45, 47, 48, 50, 52, 55, 58,

60, 63, 167
mq_receive 31, 45, 51, 53, 55, 60, 63

mq_send 31, 45, 52, 54, 56, 60, 63

mq_setattr 31, 47, 49, 57, 58, 167

mq_timedreceive . 31, 52, 55, 59, 60, 61,

63

mq_timedsend 31, 55, 62, 64

Mutexes 31

Namespace .. 25

nanosleep 65, 66, 322, 366, 400, 404

Native pthreads Implementation 25

PDV Overhead 23

Pointer and Data Verification Overhead 23

Pthread Extensions 34

pthread_attr_destroy 68, 69

pthread_attr_getdetachstate 70, 71

pthread_attr_getstackaddr 72, 73

pthread_attr_getstacksize 74, 75

pthread_attr_init 76, 77

pthread_attr_setdetachstate 78, 79

pthread_attr_setstackaddr 26, 72, 80, 81

pthread_attr_setstacksize 74, 82, 83

pthread_cancel 84, 85, 87, 89, 112, 115,

119, 153, 155, 160, 315, 320
pthread_cleanup_pop 85, 86, 87, 89,

153, 155, 160

pthread_cleanup_push 85, 87, 88, 89,

153, 155, 160

pthread_cond_broadcast .. 30, 90, 91, 97

pthread_cond_destroy 30, 92, 93, 95

pthread_cond_init 30, 91, 93, 94, 95,

104, 106, 108, 110, 208

pthread_cond_signal .. 30, 91, 96, 97, 99,

102

pthread_cond_timedwait 98, 100, 102

pthread_cond_wait .. 30, 91, 97, 99, 101,

102
pthread_condattr_destroy .. 30, 103, 104

pthread_condattr_getpshared 30, 105,

106

pthread_condattr_init 30, 107, 108

PX5 RTOS

408

pthread_condattr_setpshared 30, 109,

110
pthread_create .. 4, 6, 69, 71, 73, 75, 76,

77, 79, 80, 81, 83, 85, 87, 89,

111, 113, 115, 153, 155, 160,

194, 272, 315, 317, 320

pthread_detach 111, 112, 114, 115, 119,

120, 121, 314, 315, 319, 320

pthread_equal 116, 117, 151

pthread_exit 29, 111, 112, 115, 117,

118, 119, 121, 159, 315, 320
pthread_join 111, 112, 115, 118, 119,

120, 121, 315, 320

pthread_kill33, 122, 123, 157, 378, 379,

393, 396, 398

pthread_mutex_destroy 32, 124, 125,

127

pthread_mutex_init 32, 126, 127, 310

pthread_mutex_lock 25, 32, 128, 129,

130, 131, 133

pthread_mutex_trylock32, 130, 131, 133

pthread_mutex_unlock 32, 128, 129,

131, 132, 133
pthread_mutexattr_destroy 32, 134, 135,

143

pthread_mutexattr_getprotocol 136, 137,

145

pthread_mutexattr_getpshared .. 32, 138,

139

pthread_mutexattr_gettype 140, 141,

149
pthread_mutexattr_init 32, 135, 139,

142, 143, 147

pthread_mutexattr_setprotocol 137, 144,

145

pthread_mutexattr_setpshared .. 32, 146,

147

pthread_mutexattr_settype 141, 148,

149
pthread_self 4, 117, 150, 151

pthread_setcancelstate 84, 85, 87, 89,

111, 152, 153, 155, 160

pthread_setcanceltype 84, 85, 87, 89,

111, 153, 154, 155, 160
pthread_sigmask . 33, 123, 156, 158, 378

pthread_testcancel 85, 87, 89, 153, 155,

159, 160

pthreads API Extensions 25

PX5 RTOS Pointer/Data Verification (PDV)

 17, 18, 19

px5_mq_extend_open 49, 165, 167, 169,

171, 173, 175, 177, 178, 179,

180, 181, 182, 183, 269
px5_mq_extendattr_destroy 31, 168,

169, 179

px5_mq_extendattr_getcontroladdr ... 31,

170, 171

px5_mq_extendattr_getcontrolsize 31,

172, 173, 181

px5_mq_extendattr_getqueueaddr 31,

174, 175, 259, 260
px5_mq_extendattr_getqueuesize 31,

176, 177, 261, 262

px5_mq_extendattr_init 31, 169, 171,

173, 175, 177, 178, 179, 183

px5_mq_extendattr_setcontroladdr 26,

31, 172, 173, 180, 181

px5_mq_extendattr_setqueueaddr 26, 31,

175, 177, 182, 183, 269, 270
px5_pthread_attr_getcontroladdr 184,

185, 195

px5_pthread_attr_getcontrolsize 186,

187, 194, 195

px5_pthread_attr_getname 188, 189

px5_pthread_attr_getpriority ... 190, 191,

199

px5_pthread_attr_gettimeslice . 192, 193,

201

px5_pthread_attr_setcontroladdr 26, 184,

186, 194, 195

px5_pthread_attr_setname 196, 197

px5_pthread_attr_setpriority ... 190, 191,

198, 199

px5_pthread_attr_settimeslice . 192, 200,

201

px5_pthread_condattr_getcontroladdr

........................... 202, 203, 205

px5_pthread_condattr_getcontrolsize 203,

204, 205, 208
px5_pthread_condattr_getname 206,

207, 211

px5_pthread_condattr_setcontroladdr 26,

203, 204, 205, 208

px5_pthread_condattr_setname207, 210,

211
px5_pthread_event_flags_clear 34, 35,

212, 213

px5_pthread_event_flags_create .. 34, 35,

214, 215, 217, 234, 238, 239,

241, 265

px5_pthread_event_flags_destroy 34, 35,

215, 216, 217, 239, 240, 241

PX5 RTOS

409

px5_pthread_event_flags_set ... 213, 218,

219, 223, 242, 243, 244, 245,

246, 247, 248, 249
px5_pthread_event_flags_trywait . 34, 35,

220, 221

px5_pthread_event_flags_wait 34, 35,

219, 221, 222, 223, 243, 245,

247, 249

px5_pthread_event_flagsattr_destroy224,

225, 233, 251, 252, 264

px5_pthread_event_flagsattr_getcontrola
ddr 226, 227, 253, 254

px5_pthread_event_flagsattr_getcontrolsi
ze 227, 228, 229, 234, 235,

254, 255, 256, 265, 266

px5_pthread_event_flagsattr_getname

 ... 230, 231, 237, 257, 258, 268
px5_pthread_event_flagsattr_init 225,

232, 233, 252, 263, 264

px5_pthread_event_flagsattr_setcontrola
ddr 227, 228, 229, 234, 254,

255, 256, 265
px5_pthread_event_flagsattr_setname

 236, 237, 267, 268

px5_pthread_information_get ... 271, 273

px5_pthread_memory_manager_get 275,

276, 277, 279

px5_pthread_memory_manager_set . 275,

277, 278, 279
px5_pthread_mutexattr_getcontroladdr

 304, 305, 307

px5_pthread_mutexattr_getcontrolsize

 305, 306, 307, 310

px5_pthread_mutexattr_getname 308,

309, 313

px5_pthread_mutexattr_setcontroladdr

 26, 305, 306, 307, 310
px5_pthread_mutexattr_setname 309,

312, 313

px5_pthread_start . 8, 9, 18, 21, 26, 274,

275, 276, 277, 279, 316

px5_pthread_tick_sleep 36, 66, 321, 322,

404
px5_pthread_ticks_get 36, 323, 324

px5_pthread_ticktimer_create 36, 325,

326, 345

px5_pthread_ticktimer_destroy .. 36, 327,

328

px5_pthread_ticktimer_start 36, 325,

326, 329, 330
px5_pthread_ticktimer_stop 36, 331, 332

px5_pthread_ticktimer_update .. 36, 333,

334
px5_pthread_ticktimerattr_destroy 36,

335, 336, 344

px5_pthread_ticktimerattr_getcontroladd
r 36, 337, 338

px5_pthread_ticktimerattr_getcontrolsize

..... 36, 338, 339, 340, 345, 346
px5_pthread_ticktimerattr_getname 341,

342, 348

px5_pthread_ticktimerattr_init ... 36, 336,

343, 344

px5_pthread_ticktimerattr_setcontroladdr

............. 26, 338, 339, 340, 345

px5_pthread_ticktimerattr_setname ... 36,

347, 348
px5_sem_extend_init . 32, 349, 350, 352,

354, 356, 358, 359, 360, 361,

362, 364, 370

px5_semattr_destroy .. 32, 351, 352, 360

px5_semattr_getcontroladdr 32, 353,

354, 362
px5_semattr_getcontrolsize 32, 355, 356,

361

px5_semattr_getname 33, 357, 358, 364

px5_semattr_init 33, 352, 354, 356, 358,

359, 360, 362, 364

px5_semattr_setcontroladdr 26, 33, 354,

355, 356, 361, 362
px5_semattr_setname 33, 358, 363, 364

Run-Time Stack Checking & Verification 18

Run-time Stack Checking/Verification ... 27

Safety and Security vii, 16

sched_yield 4, 365, 366

Scheduling Policy 28

sem_destroy 32, 350, 367, 368, 370

sem_init 32, 349, 350, 368, 369, 370

sem_post 32, 371, 372, 376

sem_trywait 32, 372, 373, 374, 376

sem_wait 32, 372, 374, 375, 376

Semaphores 32

sigaction 33, 123, 157, 377, 378

sigaddset ... 33, 380, 381, 383, 385, 387,

389, 391, 394, 396, 398
sigdelset 33, 381, 382, 383, 385, 387,

389, 391

sigemptyset 33, 381, 383, 384, 385,

387, 389, 391, 394, 396, 398

sigfillset 33, 158, 381, 383, 385, 386,

387, 389, 391

sigismember 33, 388, 389

PX5 RTOS

410

Signals 33, 156

sigpending 33, 389, 390, 391

sigtimedwait 33, 392, 394, 396, 398

sigwait 33, 123, 157, 378, 392, 393,

395, 396, 398

sigwaitinfo .. 33, 392, 393, 396, 397, 398

Software Safety & Security Features 18

symbol 6, 37

System Objects 29

Thread Priorities 28

Thread States 28

Ticktimer Services 36

usleep 66, 322, 403, 404

PX5 RTOS

www.px5rtos.com 220

